首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
  32篇
  2020年   1篇
  2019年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2001年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有32条查询结果,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Physiological roles of the two distinct chloroplast-targeted ferredoxin-NADP+ oxidoreductase (FNR) isoforms in Arabidopsis thaliana were studied using T-DNA insertion line fnr1 and RNAi line fnr2 . In fnr2 FNR1 was present both as a thylakoid membrane-bound form and as a soluble protein, whereas in fnr1 the FNR2 protein existed solely in soluble form in the stroma. The fnr2 plants resembled fnr1 in having downregulated photosynthetic properties, expressed as low chlorophyll content, low accumulation of photosynthetic thylakoid proteins and reduced carbon fixation rate when compared with wild type (WT). Under standard growth conditions the level of F0'rise' and the amplitude of the thermoluminescence afterglow (AG) band, shown to correlate with cyclic electron transfer (CET), were reduced in both fnr mutants. In contrast, when plants were grown under low temperatures, both fnr mutants showed an enhanced rate of CET when compared with the WT. These data exclude the possibility that distinct FNR isoforms feed electrons to specific CET pathways. Nevertheless, the fnr2 mutants had a distinct phenotype upon growth at low temperature. The fnr2 plants grown at low temperature were more tolerant against methyl viologen (MV)-induced cell death than fnr1 and WT. The unique tolerance of fnr2 plants grown at low temperature to oxidative stress correlated with an increased level of reduced ascorbate and reactive oxygen species (ROS) scavenging enzymes, as well as with a scarcity in the accumulation of thylakoid membrane protein complexes, as compared with fnr1 and WT. These results emphasize a critical role for FNR2 in the redistribution of electrons to various reducing pathways, upon conditions that modify the photosynthetic capacity of the plant.  相似文献   
6.
In Arabidopsis thaliana, the chloroplast-targeted enzyme ferredoxin-NADP+-oxidoreductase (FNR) exists as two isoforms, AtLFNR1 and AtLFNR2, encoded by the genes At5g66190 and At1g20020, respectively. Both isoforms are evenly distributed between the thylakoids and soluble stroma, and they are separated by two-dimensional electrophoresis in four distinct spots, suggesting post-translational modification of both isoforms. To reveal the functional specificity of AtLFNR1, we have characterized the T-DNA insertion mutants with an interrupted At5g66190 gene. Absence of AtLFNR1 resulted in a reduced size of the rosette with pale green leaves, which was accompanied by a low content of chlorophyll and light-harvesting complex proteins. Also the photosystem I/photosystem II (PSI/PSII) ratio was significantly lower in the mutant, but the PSII activity, measured as the F(V)/F(M) ratio, remained nearly unchanged and the excitation pressure of PSII was lower in the mutants than in the wild type. A slow re-reduction rate of P700 measured in the mutant plants suggested that AtLFNR1 is involved in PSI-dependent cyclic electron flow. Impaired function of FNR also resulted in decreased capacity for carbon fixation, whereas nitrogen metabolism was upregulated. In the absence of AtLFNR1, we found AtLFNR2 exclusively in the stroma, suggesting that AtLFNR1 is required for membrane attachment of FNR. Structural modeling supports the formation of a AtLFNR1-AtLFNR2 heterodimer that would mediate the membrane attachment of AtLFNR2. Dimer formation, in turn, might regulate the distribution of electrons between the cyclic and linear electron transfer pathways according to environmental cues.  相似文献   
7.
8.
Chloroplast proteins that regulate the biogenesis, performance and acclimation of the photosynthetic protein complexes are currently under intense research. Dozens, possibly even hundreds, of such proteins in the stroma, thylakoid membrane and the lumen assist the biogenesis and constant repair of the water splitting photosystem (PS) II complex. During the repair cycle, assistance is required at several levels including the degradation of photodamaged D1 protein, de novo synthesis, membrane insertion, folding of the nascent protein chains and the reassembly of released protein subunits and different co-factors into PSII in order to guarantee the maintenance of the PSII function. Here we review the present knowledge of the auxiliary proteins, which have been reported to be involved in the biogenesis and maintenance of PSII.  相似文献   
9.
During daffodil flower development, chloroplasts differentiate into photosynthetically inactive chromoplasts having lost functional photosynthetic reaction centers. Chromoplasts exhibit a respiratory activity reducing oxygen to water and generating ATP. Immunoblots revealed the presence of the plastid terminal oxidase (PTOX), the NAD(P)H dehydrogenase (NDH) complex, the cytochrome b6f complex, ATP synthase and several isoforms of ferredoxin‐NADP+ oxidoreductase (FNR), and ferredoxin (Fd). Fluorescence spectroscopy allowed the detection of chlorophyll a in the cytochrome b6f complex. Here we characterize the electron transport pathway of chromorespiration by using specific inhibitors for the NDH complex, the cytochrome b6f complex, FNR and redox‐inactive Fd in which the iron was replaced by gallium. Our data suggest an electron flow via two separate pathways, both reducing plastoquinone (PQ) and using PTOX as oxidase. The first oxidizes NADPH via FNR, Fd and cytochrome bh of the cytochrome b6f complex, and does not result in the pumping of protons across the membrane. In the second, electron transport takes place via the NDH complex using both NADH and NADPH as electron donor. FNR and Fd are not involved in this pathway. The NDH complex is responsible for the generation of the proton gradient. We propose a model for chromorespiration that may also be relevant for the understanding of chlororespiration and for the characterization of the electron input from Fd to the cytochrome b6f complex during cyclic electron transport in chloroplasts.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号