Some P-450 systems, notably aromatase and 14-demethylase catalyse not only the hydroxylate reaction but also the oxidation of an alcohol into a carbonyl compound as well as a C---C bond cleavage process. All these reactions occur at the same active site. A somewhat analogous situation is noted with 17-hydroxylase-17,20-lyase that participates in hydroxylation as well as C---C bond cleavage process. The C---C bond cleavage reactions catalysed by the above enzymes conform to the general equation:
It is argued that all three types of reaction catalyzed by these enzymes may be viewed as variations on a common theme. In P-450 dependent hydroxylation the initially formed FeIII---O---O. species is converted into FeIII---O---OH and the heterolysis of the oxygen—oxygen bond of the latter then gives the oxo-derivative for which a number of canonical structures are possible; for example FeV = O ↔ (+.)FeIV = O ↔ FeIV---O.. One of these, FeIV---O. behaves like an alkoxyl radical and participates in hydrogen abstraction from C---H bond to produce FeIV---OH and carbon radical. The latter is then quenched by the delivery of hydroxyl radical from FeIV---OH. The latter species may thus be regarded as a carrier of hydroxyl radical. We have proposed that the C---C bond cleavage reaction occurs through the participation of the FeIII---O---OH species that is trapped by the electrophilic property of the carbonyl compound giving a peroxide adduct that fragments to produce an acyl—carbon cleavage. Scientific developments leading up to this conclusion are considered. In the first author's views,
“The study of mechanisms is not a scientific but a cultural activity. Mechanisms do not aim at an absolute truth but are intended to be a “running” commentary on the status of knowledge in a field. As the structural knowledge in a field advances Mechanisms evolve to take note of the new findings. Just as a constructive “running” commentary provides the stimulus for higher standards of performance, so Mechanisms call for better and firmer structural information from their practitioners”. 相似文献
Computational tools occupy the prime position in the analysis of large volume of post-genomic data. These tools have advantage
over the wet lab experiments in terms of high coverage, cost and time. Breast cancer is the most common cancer in females
worldwide. It is a genetically heterogeneous disorder and many genes are involved in the pathway of the disease. Mutations in
metastasis suppressor gene are the major cause of the disease. In this study, the effects of mutations in breast cancer metastasis
suppressor 1gene upon protein structure and function were examined by means of computational tools and information from
databases.This study can be useful to predict the potential effect of every allelic variant, devise new biological experiments and to
interpret and predict the patho-physiological impact of new mutations or non-synonymous polymorphisms. 相似文献
Conformational alterations of bovine hemoglobin (Hb) upon sequential addition of glyoxal over a range of 0–90% v/v were investigated. At 20% v/v glyoxal, molten globule (MG) state of Hb was observed by altered tryptophan fluorescence, high ANS binding, existence of intact heme, native-like secondary structure as depicted by far-UV circular dichroism (CD) and ATR-FTIR spectra as well as loss in tertiary structure as confirmed by near-UV CD spectra. In addition, size exclusion chromatography analysis depicted that MG state at 20% v/v glyoxal corresponded to expanded pre-dissociated dimers. Aggregates of Hb were detected at 70% v/v glyoxal. These aggregates of Hb had altered tryptophan environment, low ANS binding, exposed heme, increased β-sheet secondary structure, loss in tertiary structure, enhanced thioflavin T (ThT) fluorescence and red shifted Congo Red (CR) absorbance. On incubating Hb with 30% v/v glyoxal for 0–20 days, advanced glycation end products (AGEs) were detected on day 20. These AGEs were characterised by enhanced tryptophan fluorescence at 450 nm, exposure of heme, increase in intermolecular β-sheets, enhanced ThT fluorescence and red shift in CR absorbance. Comet assay revealed aggregates and AGEs to be genotoxic in nature. Scanning electron microscopy confirmed the amorphous structure of aggregates and branched fibrils of AGEs. The transformation of α-helix to β-sheet usually alters the normal protein to amyloidogenic resulting in a variety of protein conformational disorders such as diabetes, prion and Huntington''s. 相似文献
Reaction of glycolaldehyde with the binary E-NADP complex of bovine kidney aldose reductase (ALR2) produces an enzyme-bound chromophore whose absorbance (lambd max 341 nm) and fluorescence (lambda ex max 341 nm; lambda emit max 421 nm) properties are distinct from those of NADPH or E.NADPH yet are consistent with the proposed covalent adduct structure [1,4-dihydro-4-(1-hydroxy-2-oxoethyl)nicotinamide adenine dinucleotide phosphate]. The kinetics of adduct formation, both in solution and at the enzyme active site, support a mechanism involving rate-determining enolization of glycolaldehyde at high [NADP+] or [E.NADP]. At low [NADP+] or [E.NADP] the reaction is second-order overall, but the ALR2-mediated reaction displays saturation by glycolaldehyde due to competition of the aldehyde (plus hydrate) and enol for E.NADP. Measurement of the pre-steady-state burst of E-adduct formation confirms that glycolaldehyde enol is the reactive species and gives a value of 1.3 x 10(-6) for Kenol = [enol]/[( aldehyde] + [hydrate]), similar to that determined by trapping the enol with I3-. At the ALR2 active site, the rate of adduct formation is enhanced 79,000-fold and the adduct is stabilized greater than or equal to 13,000-fold relative to the reaction with NADP+ in solution. A portion of this enhancement is ascribed to specific interaction of NADP+ with the enzyme since the 3-acetylpyridine analogue, (AP)ADP+, gives values that are 15-200-fold lower. Additional evidence for strong interaction of ALR2 with both NADP+ and NADPH is reported. Yet, because dissociation of adduct is slow, catalysis of the overall adduct formation reaction by ALR2 is less than or equal to 67-fold. 相似文献
Hydrophobic interaction chromatography, an important and effective purification strategy, is generally used for the purification of variety of biomolecules. A basic understanding of the protein interaction behavior is required to effectively separate these biomolecules. A colloidal type extended Derjaguin, Landau, Verwey, and Overbeek calculations were utilized to study the interactions behavior of model proteins to commercially available hydrophobic chromatographic materials that is, Toyopearl Phenyl 650C and Toyopearl Butyl 650C. Physicochemical properties of selected model proteins were achieved by contact angle and zeta potential measurements. The contact angle of chromatographic materials used was achieved through sessile drop method on disrupted beads and capillary penetration method (CPM) on intact beads. The surface properties were further used to calculate the interactions of the proteins to chromatographic supports. The calculated secondary energy minimum of the proteins with the chromatographic materials (from the contact angle values determined through both methods can be correlated with the retention volumes from the real chromatography. The secondary energy minimum values are higher for each protein to the chromatographic materials calculated from the inputs derived through sessile drop method compared to CPM. For instance, immunoglobulin G has secondary energy minimum value of 0.17 kT compared to 0.11 kT, obtained through sessile drop method and CPM, respectively. Average relative values of the energy minimum calculated for all proteins are as 1.51 kT and 1.29 kT for Toyopearl Butyl 650C and Toyopearl Phenyl 650C, respectively, as a conversion factor for estimation of secondary energy minimum for both methods. 相似文献
A systematic investigation on the effects of trifluoroethanol and acetonitrile at various concentrations on cellulase (EC 3.2.1.4) was studied by enzyme assay, intrinsic fluorescence, ANS binding, circular dichroism and ATR-Fourier transform infra red spectroscopy. The results show the presence of molten globule states at 3% (v/v) TFE and 80% (v/v) ACN. Cellulase aggregates at 25% (v/v) TFE and 90% (v/v) ACN, as detected by decrease in intrinsic and ANS fluorescence, loss in tertiary structure and enzyme activity, increase non-native β-sheet structure as evident from far-UV CD and FTIR spectra, increase in Thioflavin T fluorescence and shift in Congo red assay. 相似文献
Latency Associated Peptide (LAP) binds TGF-beta1, forming a latent complex. Currently, LAP is presumed to function only as a sequestering agent for active TGF-beta1. Previous work shows that LAP can induce epithelial cell migration, but effects on leukocytes have not been reported. Because of the multiplicity of immunologic processes in which TGF-beta1 plays a role, we hypothesized that LAP could function independently to modulate immune responses. In separate experiments we found that LAP promoted chemotaxis of human monocytes and blocked inflammation in vivo in a murine model of the delayed-type hypersensitivity response (DTHR). These effects did not involve TGF-beta1 activity. Further studies revealed that disruption of specific LAP-thrombospondin-1 (TSP-1) interactions prevented LAP-induced responses. The effect of LAP on DTH inhibition depended on IL-10. These data support a novel role for LAP in regulating monocyte trafficking and immune modulation. 相似文献