首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   2篇
  42篇
  2022年   2篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1998年   6篇
  1995年   1篇
  1986年   1篇
  1985年   1篇
  1977年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
DNA/RNA methylation plays an important role in lung cancer initiation and progression. Liquid biopsy makes use of cells, nucleotides and proteins released from tumor cells into body fluids to help with cancer diagnosis and prognosis. Methylation of circulating tumor DNA (ctDNA) has gained increasing attention as biomarkers for lung cancer. Here we briefly introduce the biological basis and detection method of ctDNA methylation, and review various applications of methylated DNA in body fluids in lung cancer screening, diagnosis, prognosis, monitoring and treatment prediction. We also discuss the emerging role of RNA methylation as biomarkers for cancer.  相似文献   
2.
Bone marrow microenvironment(BMM) is the main sanctuary of leukemic stem cells(LSCs) and protects these cells against conventional therapies. However, it may open up an opportunity to target LSCs by breaking the close connection between LSCs and the BMM. The elimination of LSCs is of high importance, since they follow cancer stem cell theory as a part of this population. Based on cancer stem cell theory, a cell with stem cell-like features stands at the apex of the hierarchy and produces a heterogeneous population and governs the disease.Secretion of cytokines, chemokines, and extracellular vesicles, whether through autocrine or paracrine mechanisms by activation of downstream signaling pathways in LSCs, favors their persistence and makes the BMM less hospitable for normal stem cells. While all details about the interactions of the BMM and LSCs remain to be elucidated, some clinical trials have been designed to limit these reciprocal interactions to cure leukemia more effectively. In this review, we focus on chronic myeloid leukemia and acute myeloid leukemia LSCs and their milieu in the bone marrow, how to segregate them from the normal compartment, and finally the possible ways to eliminate these cells.  相似文献   
3.
4.
Summary Microsomal and soluble fractions of Pleurotus pulmonarius exhibited a reduced carbon monoxide difference spectrum with P450 maxima at 448nm and 450–452nm respectively. Substrate induced Type I spectra were observed on addition of benzo(a)pyrene to both fractions. Benzo(a)pyrene hydroxylation was measured using the aryl hydrocarbon hydroxylase assay and was observed to be P450 dependent as indicated by carbon monoxide inhibition together with the substrate binding characteristics. The activity of the fractions were observed to give Km of 200mM and 660mM and Vmax of 1.25 nmol/min/nmol P450 and 0.57 nmol/min/nmol P450 for the microsomal and cytosolic fractions respectively.  相似文献   
5.
Two paralogous genes, maeE and citM, that encode putative malic enzyme family members were identified in the Enterococcus faecalis genome. MaeE (41 kDa) and CitM (42 kDa) share a high degree of homology between them (47% identities and 68% conservative substitutions). However, the genetic context of each gene suggested that maeE is associated with malate utilization whereas citM is linked to the citrate fermentation pathway. In the present work, we focus on the biochemical characterization and physiological contribution of these enzymes in E. faecalis. With this aim, the recombinant versions of the two proteins were expressed in Escherichia coli, affinity purified and finally their kinetic parameters were determined. This approach allowed us to establish that MaeE is a malate oxidative decarboxylating enzyme and CitM is a soluble oxaloacetate decarboxylase. Moreover, our genetic studies in E. faecalis showed that the citrate fermentation phenotype is not affected by citM deletion. On the other hand, maeE gene disruption resulted in a malate fermentation deficient strain indicating that MaeE is responsible for malate metabolism in E. faecalis. Lastly, it was demonstrated that malate fermentation in E. faecalis is associated with cytoplasmic and extracellular alkalinization which clearly contributes to pH homeostasis in neutral or mild acidic conditions.  相似文献   
6.
We surveyed nine diallelic polymorphic sites on the Y chromosomes of 1,544 individuals from Africa, Asia, Europe, Oceania, and the New World. Phylogenetic analyses of these nine sites resulted in a tree for 10 distinct Y haplotypes with a coalescence time of approximately 150,000 years. The 10 haplotypes were unevenly distributed among human populations: 5 were restricted to a particular continent, 2 were shared between Africa and Europe, 1 was present only in the Old World, and 2 were found in all geographic regions surveyed. The ancestral haplotype was limited to African populations. Random permutation procedures revealed statistically significant patterns of geographical structuring of this paternal genetic variation. The results of a nested cladistic analysis indicated that these geographical associations arose through a combination of processes, including restricted, recurrent gene flow (isolation by distance) and range expansions. We inferred that one of the oldest events in the nested cladistic analysis was a range expansion out of Africa which resulted in the complete replacement of Y chromosomes throughout the Old World, a finding consistent with many versions of the Out of Africa Replacement Model. A second and more recent range expansion brought Asian Y chromosomes back to Africa without replacing the indigenous African male gene pool. Thus, the previously observed high levels of Y chromosomal genetic diversity in Africa may be due in part to bidirectional population movements. Finally, a comparison of our results with those from nested cladistic analyses of human mtDNA and beta-globin data revealed different patterns of inferences for males and females concerning the relative roles of population history (range expansions) and population structure (recurrent gene flow), thereby adding a new sex-specific component to models of human evolution.   相似文献   
7.

Background

Vitamin D is associated with lung function in cross-sectional studies, and vitamin D inadequacy is hypothesized to play a role in the pathogenesis of chronic obstructive pulmonary disease. Further data are needed to clarify the relation between vitamin D status, genetic variation in vitamin D metabolic genes, and cross-sectional and longitudinal changes in lung function in healthy adults.

Methods

We estimated the association between serum 25-hydroxyvitamin D [25(OH)D] and cross-sectional forced expiratory volume in the first second (FEV1) in Framingham Heart Study (FHS) Offspring and Third Generation participants and the association between serum 25(OH)D and longitudinal change in FEV1 in Third Generation participants using linear mixed-effects models. Using a gene-based approach, we investigated the association between 241 SNPs in 6 select vitamin D metabolic genes in relation to longitudinal change in FEV1 in Offspring participants and pursued replication of these findings in a meta-analyzed set of 4 independent cohorts.

Results

We found a positive cross-sectional association between 25(OH)D and FEV1 in FHS Offspring and Third Generation participants (P = 0.004). There was little or no association between 25(OH)D and longitudinal change in FEV1 in Third Generation participants (P = 0.97). In Offspring participants, the CYP2R1 gene, hypothesized to influence usual serum 25(OH)D status, was associated with longitudinal change in FEV1 (gene-based P < 0.05). The most significantly associated SNP from CYP2R1 had a consistent direction of association with FEV1 in the meta-analyzed set of replication cohorts, but the association did not reach statistical significance thresholds (P = 0.09).

Conclusions

Serum 25(OH)D status was associated with cross-sectional FEV1, but not longitudinal change in FEV1. The inconsistent associations may be driven by differences in the groups studied. CYP2R1 demonstrated a gene-based association with longitudinal change in FEV1 and is a promising candidate gene for further studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0238-y) contains supplementary material, which is available to authorized users.  相似文献   
8.
The organization of filamentous actin (F-actin) in living cells of the oomycete Phytophthora cinnamomi was determined during zoosporogenesis and zoospore encystment by microinjecting sporangia with fluorescently labeled phalloidin and observing resultant fluorescence by confocal microscopy. In multinucleate sporangia prior to the induction of cleavage, phalloidin labeling took the form of plaques which occurred mainly in the periphery of the sporangia. After induction of cleavage, phalloidin labeling showed that the plaques disappeared and that F-actin began to accumulate along the developing cleavage planes and around nuclei and water expulsion vacuoles. F-actin labeling was also observed near the plasma membrane in zoospores and young cysts but reverted to the plaque form in older cysts. Localization of F-actin close to the developing cleavage planes is consistent with the idea that actin microfilaments function in the positioning and expansion of the cleavage membranes. Observations of plaques of actin in living sporangia provide evidence that plaques are not aldehyde-induced fixation artifacts. Copyright 1998 Academic Press.  相似文献   
9.
Serglycin is the major proteoglycan in most hematopoietic cells, including monocytes and macrophages. The monoblastic cell line U937-1 was used to study the expression of serglycin during proliferation and differentiation. In unstimulated proliferating U937-1 cells serglycin mRNA is nonconstitutively expressed. The level of serglycin mRNA was found to correlate with the synthesis of chondroitin sulfate proteoglycan (CSPG). The U937-1 cells were induced to differentiate into different types of macrophage-like cells by exposing the cells to PMA, RA, or VitD3. These inducers of differentiation affected the expression of serglycin mRNA in three different ways. The initial upregulation seen in the normally proliferating cells was not observed in PMA treated cells. In contrast, RA increased the initial upregulation, giving a reproducible six times increase in serglycin mRNA level from 4 to 24 h of incubation, compared to a four times increase in the control cells. VitD3 had no effect on the expression of serglycin mRNA. The incorporation of (35S)sulfate into CSPG decreased approximately 50% in all three differentiated cell types. Further, the (35S)CSPGs expressed were of larger size in PMA treated cells than controls, but smaller after RA treatment. This was due to the expression of CSPGs, with CS-chains of 25 and 5 kDa in PMA and RA treated cells, respectively, compared to 11 kDa in the controls. VitD3 had no significant effect on the size of CSPG produced. PMA treated cells secreted 75% of the (35S)PGs expressed, but the major portion was retained in cells treated with VitD3 or RA. The differences seen in serglycin mRNA levels, the macromolecular properties of serglycin and in the PG secretion patterns, suggest that serglycin may have different functions in different types of macrophages.   相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号