首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6958篇
  免费   408篇
  国内免费   20篇
  7386篇
  2024年   12篇
  2023年   95篇
  2022年   253篇
  2021年   366篇
  2020年   340篇
  2019年   488篇
  2018年   380篇
  2017年   269篇
  2016年   356篇
  2015年   385篇
  2014年   468篇
  2013年   597篇
  2012年   566篇
  2011年   567篇
  2010年   297篇
  2009年   257篇
  2008年   280篇
  2007年   282篇
  2006年   248篇
  2005年   209篇
  2004年   156篇
  2003年   114篇
  2002年   99篇
  2001年   22篇
  2000年   18篇
  1999年   23篇
  1998年   20篇
  1997年   18篇
  1996年   17篇
  1995年   6篇
  1994年   7篇
  1993年   13篇
  1992年   8篇
  1991年   15篇
  1990年   5篇
  1989年   10篇
  1988年   5篇
  1987年   15篇
  1986年   15篇
  1985年   13篇
  1984年   13篇
  1983年   8篇
  1982年   6篇
  1981年   6篇
  1980年   6篇
  1978年   3篇
  1976年   3篇
  1974年   7篇
  1973年   3篇
  1972年   3篇
排序方式: 共有7386条查询结果,搜索用时 15 毫秒
1.
2.
3.
A tailed bacteriophage, φMR11 (siphovirus), was selected as a candidate therapeutic phage against Staphylococcus aureus infections. Gene 61, one of the 67 ORFs identified, is located in the morphogenic module. The gene product (gp61) has lytic domains homologous to CHAP (corresponding to an amidase function) at its N-terminus and lysozyme subfamily 2 (LYZ2) at its C-terminus. Each domain of gp61 was purified as a recombinant protein. Both the amidase [amino acids (aa) 1–150] and the lysozyme (aa 401–624) domains but not the linker domain (aa 151–400) caused efficient lysis of S . aureus . Immunoelectron microscopy localized gp61 to the tail tip of the φMR11 phage. These data strongly suggest that gp61 is a tail-associated lytic factor involved in local cell-wall degradation, allowing the subsequent injection of φMR11 DNA into the host cytoplasm. Staphylococcus aureus lysogenized with φMR11 was also lysed by both proteins. Staphylococcus aureus strains on which φMR11 phage can only produce spots but not plaques were also lysed by each protein, indicating that gp61 may be involved in 'lysis from without'. This is the first report of the presence of a tail-associated virion protein that acts as a lysin, in an S. aureus phage.  相似文献   
4.
As an extension of our previous work we not only evaluated the relationship between acidosis and lipid peroxidation in rat's kidney homogenate, but also determined for the first time the potential anti-oxidant activity of diphenyl diselenide, diphenyl ditelluride and ebselen at a range of pH values (7.4–5.4). Because of the pH dependency of iron redox cycling, pH and iron need to be well controlled and for the reason we tested a number of pH values (from 7.4 to 5.4) to get a closer idea about the role of iron under various pathological conditions. Acidosis increased rate of lipid peroxidation in the absence Fe (II) in kidney homogenates especially at pH 5.4. This higher extent of lipid peroxidation can be explained by; the mobilized iron which may come from reserves where it is weakly bound. Addition of iron (Fe) chelator desferoxamine (DFO) to reaction medium completely inhibited the peroxidation processes at all studied pH values including acidic values (5.8–5.4). In the presence of Fe (II) acidosis also enhanced detrimental effect of Fe (II) especially at pH (6.4–5.4). Diphenyl diselenide significantly protected lipid peroxidation at all studied pH values, while ebselen offered only a small statistically non-significant protection. The highest anti-oxidant potency was observed for diphenyl ditelluride. These differences in potencies were explained by the mode of action of these compounds using their catalytic anti-oxidant cycles. However, changing the pH of the reaction medium did not alter the anti-oxidant activity of the tested compounds. This study provides evidence for acidosis catalyzed oxidative stress in kidney homogenate and for the first time anti-oxidant potential of diphenyl diselenide and diphenyl ditelluride not only at physiological pH but also at a range of acidic values.  相似文献   
5.
Photolysis of E-[ring-2-14C]urocanic acid (UA) with native or denatured calf thymus DNA leads to covalent binding of the radiolabel to the nucleic acid. A similar observation is made upon photolysis of the labeled UA with the polyribonucleotides, in which case a strong preference is observed for binding to poly[U]. DNA or poly[U], which had been reacted with UA and purified by dialysis and multiple precipitations, releases UA upon further irradiation with 254 nm light (as expected for cyclobutane adducts). Quantum efficiencies for binding of the UA to native DNA have been measured at 308 and 266 nm and are 0.30 x 10(-5) and 1.3 x 10(-4), respectively, at comparable reactant concentrations. The large increase at the shorter wavelength (where DNA absorption is more competitive) is taken as evidence for the primary role of a DNA excited state in initiating the binding reaction(s).  相似文献   
6.
Human immunodeficiency virus type 1 encoded viral protein Vpr is essential for infection of macrophages by HIV-1. Furthermore, these macrophages are resistant to cell death and are viral reservoir. However, the impact of Vpr on the macrophage proteome is yet to be comprehended. The goal of the present study was to use a stable-isotope labeling by amino acids in cell culture (SILAC) coupled with mass spectrometry-based proteomics approach to characterize the Vpr response in macrophages. Cultured human monocytic cells, U937, were differentiated into macrophages and transduced with adenovirus construct harboring the Vpr gene. More than 600 proteins were quantified in SILAC coupled with LC-MS/MS approach, among which 136 were significantly altered upon Vpr overexpression in macrophages. Quantified proteins were selected and clustered by biological functions, pathway and network analysis using Ingenuity computational pathway analysis. The proteomic data illustrating increase in abundance of enzymes in the glycolytic pathway (pentose phosphate and pyruvate metabolism) was further validated by western blot analysis. In addition, the proteomic data demonstrate down regulation of some key mitochondrial enzymes such as glutamate dehydrogenase 2 (GLUD2), adenylate kinase 2 (AK2) and transketolase (TKT). Based on these observations we postulate that HIV-1 hijacks the macrophage glucose metabolism pathway via the Vpr-hypoxia inducible factor 1 alpha (HIF-1 alpha) axis to induce expression of hexokinase (HK), glucose-6-phosphate dehyrogenase (G6PD) and pyruvate kinase muscle type 2 (PKM2) that facilitates viral replication and biogenesis, and long-term survival of macrophages. Furthermore, dysregulation of mitochondrial glutamate metabolism in macrophages can contribute to neurodegeneration via neuroexcitotoxic mechanisms in the context of NeuroAIDS.  相似文献   
7.
8.
9.
A new flavone glucoside macrophylloside has been isolated from the whole plant of Primula macrophylla and its structure was determined by spectroscopic methods as 2′-hydroxy-7-O-β- -glucopyranosyloxyflavone. Sitosterol glucoside was also isolated for the first time from this plant.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号