首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   6篇
  187篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   15篇
  2012年   8篇
  2011年   16篇
  2010年   8篇
  2009年   6篇
  2008年   14篇
  2007年   10篇
  2006年   12篇
  2005年   11篇
  2004年   10篇
  2003年   8篇
  2002年   15篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   7篇
  1992年   2篇
  1990年   3篇
  1988年   3篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有187条查询结果,搜索用时 0 毫秒
1.
2.
Summary Combined immunohistochemical staining (IHCS) and enzyme histochemical staining (EHCS) methods for light microscopy (LM) and electron microscopy (EM) are reported, using oestrogeninduced rat pituitary tumours. For LM, combined staining for alkaline phosphatase and acid phosphatase by EHCS, using the azo dye method, and for prolactin and ACTH by IHCS, using the enzyme-labelled antibody method, gave the best results on 1 m glycol methacrylate sections. For EM, combined staining by EHCS on 30 m tissue sections followed by IHCS for prolactin on ultrathin Epon sections (enzyme-labelled antibody method) provided acceptable results. By these combined staining methods, the neoplastic prolactin cells were shown to have close affinity to rich alkaline phosphatase-positive capillaries and to possess an alkaline phosphatase-positive cell membrane. Furthermore, they revealed acid phosphatase-positive lysosomal and secretory granules. These combined staining methods may be valuable in studies on the actual functional status of cells.  相似文献   
3.
Spermatogenesis originates from a small number of spermatogonial stem cells that reside on the basement membrane and undergo self-renewal division to support spermatogenesis throughout the life of adult animals. Although the recent development of a technique to culture spermatogonial stem cells allowed reproduction of self-renewal division in vitro, much remains unknown about how spermatogonial stem cells are regulated. In this study, we found that spermatogonial stem cells could be cultured in an anchorage-independent manner, which is characteristic of stem cells from other types of self-renewing tissues. Although the cultured cells grew slowly (doubling time, approximately 4.7 days), they expressed markers of spermatogonia, and grew exponentially for at least 5 months to achieve 1.5 x 10(10) -fold expansion. The cultured cells underwent spermatogenesis following transplantation into the seminiferous tubules of infertile animals and fertile offspring were obtained by microinsemination of germ cells that had developed within the testes of recipients of the cultured cells. These results indicate that spermatogonial stem cells can undergo anchorage-independent, self-renewal division, and suggest that stem cells have the common property to survive and proliferate in the absence of exogenous substrata.  相似文献   
4.
5.
Unlike any great apes, humans have expanded into a wide variety of habitats during the course of evolution, beginning with the transition by australopithecines from forest to savanna habitation. Novel environments are likely to have imposed hominids a demographic challenge due to such factors as higher predation risk and scarcer food resources. In fact, recent studies have found a paucity of older relative to younger adults in hominid fossil remains, indicating considerably high adult mortality in australopithecines, early Homo, and Neanderthals. It is not clear to date why only human ancestors among all hominoid species could survive in these harsh environments. In this paper, we explore the possibility that hominids had shorter interbirth intervals to enhance fertility than the extant apes. To infer interbirth intervals in fossil hominids, we introduce the notion of the critical interbirth interval, or the threshold length of birth spacing above which a population is expected to go to extinction. We develop a new method to obtain the critical interbirth intervals of hominids based on the observed ratios of older adults to all adults in fossil samples. Our analysis suggests that the critical interbirth intervals of australopithecines, early Homo, and Neanderthals are significantly shorter than the observed interbirth intervals of extant great apes. We also discuss possible factors that may have caused the evolutionary divergence of hominid life history traits from those of great apes.  相似文献   
6.
An enzymatic fluorometric assay for pyridoxal with pyridoxal dehydrogenase was developed. The detection limit was about 10 pmol: the calibration curve of pyridoxal showed high linearity (r=0.993). The values obtained by this method correlated well with those by the HPLC method. The enzyme had a high specificity for pyridoxal, and thus animal samples could be directly analyzed without separation of pyridoxal 5'-phosphate by column chromatography.  相似文献   
7.
8.
Fibroblast growth factor 2 (FGF2) and glial cell line-derived neurotrophic factor (GDNF) are required to recapitulate spermatogonial stem cell (SSC) self-renewal in vitro. Although studies have revealed the role of the GDNF signaling pathway in SSCs, little is known about how FGF2 is involved. In the present study, we assessed the role of the FGF2 signaling pathway using a mouse germline stem (GS) cell culture system that allows in vitro expansion of SSCs. Adding GDNF or FGF2 induced phosphorylation of MAPK1/3, and adding the MAP2K1 inhibitor PD0325091 reduced GS cell proliferation and MAPK1/3 phosphorylation. Moreover, GS cells transfected with an activated form of Map2k1 not only upregulated Etv5 and Bcl6b gene expression, but also proliferated in an FGF2-independent manner, suggesting that they act downstream of MAP2K1 signaling to drive SSC self-renewal. Although GS cells transfected with Map2k1, Etv5 or Bcl6b showed normal spermatogonial markers, transplanting GS cells expressing Bcl6b into infertile mouse testes resulted in the formation of a germ cell tumor, suggesting that excessive self-renewal signals causes tumorigenic conversion. These results show that FGF2 depends on MAP2K1 signaling to drive SSC self-renewal via upregulation of the Etv5 and Bcl6b genes.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号