首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   21篇
  202篇
  2023年   1篇
  2022年   4篇
  2021年   8篇
  2020年   4篇
  2019年   6篇
  2018年   3篇
  2017年   6篇
  2016年   10篇
  2015年   11篇
  2014年   15篇
  2013年   20篇
  2012年   26篇
  2011年   24篇
  2010年   16篇
  2009年   10篇
  2008年   8篇
  2007年   8篇
  2006年   5篇
  2005年   7篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  1993年   1篇
  1968年   1篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
1.
2.
Fatty acid (FA) metabolism plays a central role in body homeostasis and related diseases. Thus, FA metabolic enzymes are attractive targets for drug therapy. Mouse studies on Acetyl-coenzymeA-carboxylase (ACC), the rate-limiting enzyme for FA synthesis, have highlighted its homeostatic role in liver and adipose tissue. We took advantage of the powerful genetics of Drosophila melanogaster to investigate the role of the unique Drosophila ACC homologue in the fat body and the oenocytes. The fat body accomplishes hepatic and storage functions, whereas the oenocytes are proposed to produce the cuticular lipids and to contribute to the hepatic function. RNA-interfering disruption of ACC in the fat body does not affect viability but does result in a dramatic reduction in triglyceride storage and a concurrent increase in glycogen accumulation. These metabolic perturbations further highlight the role of triglyceride and glycogen storage in controlling circulatory sugar levels, thereby validating Drosophila as a relevant model to explore the tissue-specific function of FA metabolic enzymes. In contrast, ACC disruption in the oenocytes through RNA-interference or tissue-targeted mutation induces lethality, as does oenocyte ablation. Surprisingly, this lethality is associated with a failure in the watertightness of the spiracles-the organs controlling the entry of air into the trachea. At the cellular level, we have observed that, in defective spiracles, lipids fail to transfer from the spiracular gland to the point of air entry. This phenotype is caused by disrupted synthesis of a putative very-long-chain-FA (VLCFA) within the oenocytes, which ultimately results in a lethal anoxic issue. Preventing liquid entry into respiratory systems is a universal issue for air-breathing animals. Here, we have shown that, in Drosophila, this process is controlled by a putative VLCFA produced within the oenocytes.  相似文献   
3.
We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear (‘Old Home’בLouise Bon Jersey’) and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.  相似文献   
4.
The main targets of hepatitis C virus (HCV) are hepatocytes, the highly polarized cells of the liver, and all the steps of its life cycle are tightly dependent on host lipid metabolism. The interplay between polarity and lipid metabolism in HCV infection has been poorly investigated. Signaling lipids, such as phosphoinositides (PIs), play a vital role in polarity, which depends on the distribution and expression of PI kinases and PI phosphatases. In this study, we report that HCV core protein, expressed in Huh7 and Madin–Darby canine kidney (MDCK) cells, disrupts apicobasal polarity. This is associated with decreased expression of the polarity protein Dlg1 and the PI phosphatase SHIP2, which converts phosphatidylinositol 3,4,5-trisphosphate into phosphatidylinositol 4,5-bisphosphate (PtdIns(3,4)P2). SHIP2 is mainly localized at the basolateral membrane of polarized MDCK cells. In addition, PtdIns(3,4)P2 is able to bind to Dlg1. SHIP2 small interfering RNA or its catalytically dead mutant disrupts apicobasal polarity, similar to HCV core. In core-expressing cells, RhoA activity is inhibited, whereas Rac1 is activated. Of interest, SHIP2 expression rescues polarity, RhoA activation, and restricted core level in MDCK cells. We conclude that SHIP2 is an important regulator of polarity, which is subverted by HCV in epithelial cells. It is suggested that SHIP2 could be a promising target for anti-HCV treatment.  相似文献   
5.

Background

Disease resistance (R) genes from different Rosaceae species have been identified by map-based cloning for resistance breeding. However, there are few reports describing the pattern of R-gene evolution in Rosaceae species because several Rosaceae genome sequences have only recently become available.

Results

Since most disease resistance genes encode NBS-LRR proteins, we performed a systematic genome-wide survey of NBS-LRR genes between five Rosaceae species, namely Fragaria vesca (strawberry), Malus × domestica (apple), Pyrus bretschneideri (pear), Prunus persica (peach) and Prunus mume (mei) which contained 144, 748, 469, 354 and 352 NBS-LRR genes, respectively. A high proportion of multi-genes and similar Ks peaks (Ks = 0.1- 0.2) of gene families in the four woody genomes were detected. A total of 385 species-specific duplicate clades were observed in the phylogenetic tree constructed using all 2067 NBS-LRR genes. High percentages of NBS-LRR genes derived from species-specific duplication were found among the five genomes (61.81% in strawberry, 66.04% in apple, 48.61% in pear, 37.01% in peach and 40.05% in mei). Furthermore, the Ks and Ka/Ks values of TIR-NBS-LRR genes (TNLs) were significantly greater than those of non-TIR-NBS-LRR genes (non-TNLs), and most of the NBS-LRRs had Ka/Ks ratios less than 1, suggesting that they were evolving under a subfunctionalization model driven by purifying selection.

Conclusions

Our results indicate that recent duplications played an important role in the evolution of NBS-LRR genes in the four woody perennial Rosaceae species. Based on the phylogenetic tree produced, it could be inferred that species-specific duplication has mainly contributed to the expansion of NBS-LRR genes in the five Rosaceae species. In addition, the Ks and Ka/Ks ratios suggest that the rapidly evolved TNLs have different evolutionary patterns to adapt to different pathogens compared with non-TNL resistant genes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1291-0) contains supplementary material, which is available to authorized users.  相似文献   
6.
Gene silencing by RNA interference (RNAi) has proven to be a powerful tool for investigating gene function in mammalian cells. Combination of several short interfering RNA (siRNA) targeting the same gene is commonly used to improve RNA interference. However, in contrary to the well-described mechanism of RNAi, efficiency of single siRNA compared to pool remains poorly documented. We addressed this issue using several active and inactive siRNA targeting Eg5, a kinesin-related motor involved in mitotic spindle assembly. These siRNA, used alone or in combination, were tested for their silencing efficiency in several cancer cell lines. Here we show that presence of inactive Eg5 siRNA in a pool dramatically decreases knockdown efficacy in a cell line- and dose-dependent manner. Lack of inhibition by unrelated siRNA suggests that a competition may occur during siRNA incorporation into RNA-induced silencing complexes (RISCs) along with the target mRNA. Altogether, our results, which need to be confirmed with additional inactive siRNA, indicate that combination of siRNA may not increase but instead decrease silencing efficiency.  相似文献   
7.
The feasibility and reproducibility of liver stiffness measurements using Supersonic Shear-wave Imaging (SSI) in preterm neonate have not been reported. Our aim was to determine if liver stiffness differs between intra-uterine growth restriction (IUGR) and appropriate for gestational age (AGA) preterm infants with/without cholestasis. We measured liver stiffness (in kPa) in 45 AGA and 18 IUGR preterm infants, and assessed reproducibility in 26 preterms using Intraclass Correlation Coefficients (ICC) and Bland-Altman tests. Liver stiffness values were compared between AGA and IUGR with and without cholestasis and correlated with birth weight. Measurements showed high reproducibility (ICC = 0.94–0.98 for intra-operator, 0.86 for inter-operator) with good agreement (95% limits: -1.24 to 1.24 kPa). During the first postnatal week, liver stiffness was higher in IUGR (7.50 ±1.53 kPa) than in AGA infants (5.11 ±0.80 kPa, p<0.001). After day 8, liver stiffness remained unchanged in AGA but increased progressively in IUGR infants (15.57 ±6.49 kPa after day 21). Liver stiffness was higher in IUGR neonates with cholestasis (19.35 ± 9.80 kPa) than without cholestasis (7.72 ± 1.27 kPa, p<0.001). In conclusion, quantitative liver SSI in preterms is feasible and reproducible. IUGR preterms who will develop cholestasis present high liver stiffness even at birth, before biological cholestasis occurs.  相似文献   
8.
9.
Many of the brain structures involved in performing real movements also have increased activity during imagined movements or during motor observation, and this could be the neural substrate underlying the effects of motor imagery in motor learning or motor rehabilitation. In the absence of any objective physiological method of measurement, it is currently impossible to be sure that the patient is indeed performing the task as instructed. Eye gaze recording during a motor imagery task could be a possible way to “spy” on the activity an individual is really engaged in. The aim of the present study was to compare the pattern of eye movement metrics during motor observation, visual and kinesthetic motor imagery (VI, KI), target fixation, and mental calculation. Twenty-two healthy subjects (16 females and 6 males), were required to perform tests in five conditions using imagery in the Box and Block Test tasks following the procedure described by Liepert et al. Eye movements were analysed by a non-invasive oculometric measure (SMI RED250 system). Two parameters describing gaze pattern were calculated: the index of ocular mobility (saccade duration over saccade + fixation duration) and the number of midline crossings (i.e. the number of times the subjects gaze crossed the midline of the screen when performing the different tasks). Both parameters were significantly different between visual imagery and kinesthesic imagery, visual imagery and mental calculation, and visual imagery and target fixation. For the first time we were able to show that eye movement patterns are different during VI and KI tasks. Our results suggest gaze metric parameters could be used as an objective unobtrusive approach to assess engagement in a motor imagery task. Further studies should define how oculomotor parameters could be used as an indicator of the rehabilitation task a patient is engaged in.  相似文献   
10.
Knowledge about the sequence-based genetic diversity of a crop species is important in order to develop highly informative genotyping assays, which will eventually positively impact breeding practice. Diversity data were obtained from two pools of 185 and 75 accessions each, representing most of the species belonging to the genus Malus, by re-sequencing 27 gene-specific amplicons and by screening 237 Malus × domestica SNPs using the multiplex genotyping technology SNPlex™. Nucleotide diversity and insertion/deletion rates in M. × domestica were estimated as π = 0.0037 and 1/333 bp, respectively. The SNP frequency was estimated as 0.0194 (1 SNP/52 bp) while within a single apple cultivar an average of one SNP in every 455 bp was found. We also investigated transferability (T SNP) of the heterozygous state of SNPs across the species M. × domestica and the genus Malus. Raw re-sequencing showed that 12–15% of M. × domestica SNPs are transferable to a second M. × domestica cultivar, however T SNP rose to ∼41% with SNPs selected for high minor allele frequency. T SNP of chosen SNPs averaged ∼27% in the two M. × domestica-related species, Malus sieversii and Malus sylvestris, but was much lower in more distantly related species. On the basis of T SNP, simulations, and empirical results, we calculated that a close-design, multiplexed genotyping array with at least 2,000 SNPs is required for building a highly saturated linkage maps within any M. × domestica cross. The same array would gradually lose informativeness in increasingly phylogenetically distant Malus species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号