全文获取类型
收费全文 | 595篇 |
免费 | 40篇 |
专业分类
635篇 |
出版年
2023年 | 3篇 |
2022年 | 10篇 |
2021年 | 29篇 |
2020年 | 11篇 |
2019年 | 16篇 |
2018年 | 16篇 |
2017年 | 16篇 |
2016年 | 14篇 |
2015年 | 32篇 |
2014年 | 31篇 |
2013年 | 50篇 |
2012年 | 45篇 |
2011年 | 54篇 |
2010年 | 37篇 |
2009年 | 27篇 |
2008年 | 36篇 |
2007年 | 28篇 |
2006年 | 24篇 |
2005年 | 23篇 |
2004年 | 29篇 |
2003年 | 21篇 |
2002年 | 10篇 |
2001年 | 10篇 |
2000年 | 9篇 |
1999年 | 5篇 |
1998年 | 6篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1995年 | 4篇 |
1994年 | 2篇 |
1993年 | 4篇 |
1992年 | 2篇 |
1991年 | 8篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1987年 | 2篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1972年 | 1篇 |
排序方式: 共有635条查询结果,搜索用时 11 毫秒
1.
2.
S Ravichandran J Dasgupta C Chakrabarti S Ghosh M Singh J K Dattagupta 《Protein engineering》2001,14(5):349-357
A double-headed chymotrypsin inhibitor, WCI, from winged bean seeds was cloned for structural and biochemical studies. The inhibitor was subjected to two point mutations at a conserved position, Asn14. This residue, known to have a pivotal role in stabilizing the first reactive-site loop (Gln63-Phe68) of the inhibitor, is highly conserved in the sequences of the other members of Kunitz (STI) family as well as in the sequences of Kazal family of serine protease inhibitors. The mutants, N14K and N14D, were subjected to biochemical assay and their characteristics were compared with those of the recombinant inhibitor (rWCI). Crystallographic studies of the recombinant and the mutant proteins are discussed. These studies were primarily aimed at understanding the importance of the protein scaffolding towards the conformational rigidity of the reactive-site loop. Our analysis reveals that, as the Lys14 side chain takes an unusual fold in N14K and the Asp14 side chain in N14D interacts with the loop residues by water-mediated hydrogen bonds, the canonical conformation of the loop has remained effectively intact in both the mutant structures. However, minor alterations such as a 2-fold increase in the inhibitory affinity towards the cognate enzyme were observed. 相似文献
3.
4.
5.
J C Pratt M R van den Brink V E Igras S F Walk K S Ravichandran S J Burakoff 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(5):2586-2591
Engagement of the TCR determines the fate of T cells to activate their functional programs, proliferate, or undergo apoptosis. The intracellular signal transduction pathways that dictate the specific outcome of receptor engagement have only been partially elucidated. The adapter protein, Shc, is involved in cytokine production, mitogenesis, transformation, and apoptosis in different cell systems. We found that Shc becomes phosphorylated on tyrosine residues upon stimulation of the TCR in DO11.10 hybridoma T cells; therefore, we investigated the role of Shc in activation-induced cell death in these cells by creating a series of stably transfected cell lines. Expression of Shc-SH2 (the SH2 domain of Shc) or Shc-Y239/240F (full-length Shc in which tyrosines 239 and 240 have been mutated to phenylalanine) resulted in the inhibition of activation-induced cell death and Fas ligand up-regulation after TCR cross-linking. Expression of wild-type Shc or Shc-Y317F had no significant effect. In addition, we found that Shc-SH2 and Shc-Y239/240F, but not Shc-Y317F, inhibited phosphorylation of extracellular signal-regulated protein kinase and production of IL-2 after TCR cross-linking. These results indicate an important role for Shc in the early signaling events that lead to activation-induced cell death and IL-2 production after TCR activation. 相似文献
6.
Dengue type-2 virus infection in mice induces a subpopulation of T lymphocytes to produce a cytokine cytotoxic factor, which induces macrophages (Mphi) to produce a biologically active cytotoxic cytokine, the Mphi cytotoxin (CF2). Previously we have identified the presence of intermediate-affinity receptors for CF2 on mouse peritoneal Mphi. The present study was undertaken to identify the CF2-receptors (CF2-R) on murine T cells followed by their purification and characterization. Receptor binding assay and Scatchard analysis revealed single, high-affinity (1.0309 nM) receptors for CF2 on T cells (22000 receptors per cell). The binding of [125I]CF2 on murine T cells was saturable and specific. Furthermore, CF2-R was purified from normal mouse T cell plasma membrane by affinity chromatography followed by reversed-phase high-pressure liquid chromatography. The presence of CF2-R was confirmed by indirect dot-blot assay and its binding with [125I]CF2. The purified CF2-R is a 90-95-kDa protein as characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis. The chemical crosslinking of [125I]CF2 and its receptor complex showed a product of 100-110 kDa on different subpopulations of murine T cells. The pretreatment of target cells with anti-CF2-R antisera inhibited the cytotoxic activity of CF2 in a dose-dependent manner and thus confirmed the biological significance of CF2-R. Moreover, the presence of CF2-R was also identified on normal human peripheral blood mononuclear cells and T and B cells by crosslinking with [125I]CF2, thus revealing the possible role of CF2 and CF2-R in the immunopathogenesis of dengue virus disease. 相似文献
7.
Patil Basavaprabhu L. Raghu Rajanna Dangwal Meenakshi Byregowda M. Voloudakis Andreas 《Journal of plant biochemistry and biotechnology.》2021,30(2):400-405
Journal of Plant Biochemistry and Biotechnology - Pigeonpea sterility mosaic emaraviruses (PPSMVs) cause sterility mosaic disease in pigeonpea which significantly reduce the crop yield. Currently... 相似文献
8.
Manish Singh Kaushik Meenakshi Srivastava Anumeha Singh Arun Kumar Mishra 《World journal of microbiology & biotechnology》2017,33(8):158
Iron deficiency ends up into several unavoidable consequences including damaging oxidative stress in cyanobacteria. NtcA is a global nitrogen regulator controls wide range of metabolisms in addition to regulation of nitrogen metabolism. In present communication, NtcA based regulation of iron homeostasis, ROS production and cellular phenotype under iron deficiency in Anabaena 7120 has been investigated. NtcA regulates the concentration dependent iron uptake by controlling the expression of furA gene. NtcA also regulated pigment synthesis and phenotypic alterations in Anabaena 7120. A significant increase in ROS production and corresponding reduction in the activities of antioxidative enzymes (SOD, CAT, APX and GR) in CSE2 mutant strain in contrast to wild type Anabaena 7120 also suggested the possible involvement of NtcA in protection against oxidative stress in iron deficiency. NtcA has no impact on the expression of furB and furC in spite of presence of consensus NtcA binding site (NBS) and ?10 boxes in their promoter. NtcA also regulates the thylakoid arrangement as well as related photosynthetic and respiration rates under iron deficiency in Anabaena 7120. Overall results suggested that NtcA regulates iron acquisition and in turn protect Anabaena cells from the damaging effects of oxidative stress induced under iron deficiency. 相似文献
9.
David T. Terrano Meenakshi Upreti Timothy C. Chambers 《Molecular and cellular biology》2010,30(3):640-656
Despite detailed knowledge of the components of the spindle assembly checkpoint, a molecular explanation of how cells die after prolonged spindle checkpoint activation, and thus how microtubule inhibitors and other antimitotic drugs ultimately elicit their lethal effects, has yet to emerge. Mitotically arrested cells typically display extensive phosphorylation of two key antiapoptotic proteins, Bcl-xL and Bcl-2, and evidence suggests that phosphorylation disables their antiapoptotic activity. However, the responsible kinase has remained elusive. In this report, evidence is presented that cyclin-dependent kinase 1 (CDK1)/cyclin B catalyzes mitotic-arrest-induced Bcl-xL/Bcl-2 phosphorylation. Furthermore, we show that CDK1 transiently and incompletely phosphorylates these proteins during normal mitosis. When mitosis is prolonged in the absence of microtubule inhibition, Bcl-xL and Bcl-2 become highly phosphorylated. Transient overexpression of nondegradable cyclin B1 caused apoptotic death, which was blocked by a phosphodefective Bcl-xL mutant but not by a phosphomimetic Bcl-xL mutant, confirming Bcl-xL as a key target of proapoptotic CDK1 signaling. These findings suggest a model whereby a switch in the duration of CDK1 activation, from transient during mitosis to sustained during mitotic arrest, dramatically increases the extent of Bcl-xL/Bcl-2 phosphorylation, resulting in inactivation of their antiapoptotic function. Thus, phosphorylation of antiapoptotic Bcl-2 proteins acts as a sensor for CDK1 signal duration and as a functional link coupling mitotic arrest to apoptosis.The cell division cycle is controlled by checkpoints, which ensure the fidelity of chromosome replication and segregation, as well as orderly progression through the cell cycle. If these critical events cannot be completed as scheduled, damaged cells, which might otherwise pose a threat to the organism as precancerous cells, are eliminated (16). The mitotic checkpoint, for example, produces a “prevent anaphase” signal until all the chromosomes are properly attached to kinetochores (22). Microtubule inhibitors (MTIs) and other antimitotic agents prolong the activation of this checkpoint, causing mitotic arrest, which culminates in cell death generally via intrinsic apoptosis, providing a rationale for the use of these agents as antitumor agents (20, 31). Intrinsic or mitochondrial apoptosis is regulated by the Bcl-2 family of proteins, which exhibit either pro- or antiapoptotic properties (17, 37). The BH3-only proapoptotic members act as essential initiators of intrinsic apoptosis, whereas the multidomain proapoptotic members, Bax and Bak, act as essential mediators of mitochondrial membrane permeability. Antiapoptotic Bcl-2 family members, including Bcl-xL, Bcl-2, and Mcl-1, oppose apoptosis by binding to the proapoptotic members and neutralizing their activity.The molecular mechanisms leading to cell death in response to spindle checkpoint activation have yet to be established. Indeed, how the spindle checkpoint couples to pathways regulating cell survival and death still represents an unresolved issue in cell biology (26, 35). Nonetheless, it seems reasonable to hypothesize that signals generated in response to prolonged mitotic arrest are eventually transduced to the apoptotic machinery. In this regard, it is striking that MTIs consistently induce the phosphorylation of two key antiapoptotic proteins, Bcl-2 and Bcl-xL, whereas other apoptotic stimuli fail to do so (9, 13, 25). The results of studies with phosphodefective mutants of Bcl-2 and Bcl-xL indicate that phosphorylation antagonizes their antiapoptotic function (2, 33, 36), but the precise mechanism(s) has yet to be fully clarified.The identity of the kinase responsible for the extensive phosphorylation of Bcl-xL and Bcl-2 that occurs in response to sustained spindle checkpoint activation is unresolved. Identification of this kinase is considered to be of critical importance, since it will provide insight into the molecular links between mitotic arrest and cell death, as well as the molecular mechanism of action of antimitotic drugs. Several candidates have been proposed, including Raf-1 (3), Jun N-terminal protein kinase (JNK) (2, 11, 36), protein kinase A (PKA) (32), cyclin-dependent kinase 1 (CDK1) (24), and mammalian target of rapamycin (mTOR) (4). In general, however, conclusions have been correlative or have been based on the use of kinase inhibitors tested under conditions that precluded mitotic arrest and thus indirectly blocked the effects of MTIs. Thus, strong experimental evidence supporting identification is lacking.Here we present evidence that the CDK1/cyclin B kinase complex is responsible for mitotic arrest-induced Bcl-xL/Bcl-2 phosphorylation. Furthermore, we show that CDK1 transiently and incompletely phosphorylates these proteins during normal mitosis. The findings suggest a model whereby a switch in the duration of CDK1 activation, from transient during mitosis to sustained during mitotic arrest, dramatically increases the extent of Bcl-xL/Bcl-2 phosphorylation, resulting in inactivation of the antiapoptotic function of Bcl-xL/Bcl-2. Thus, CDK1-mediated phosphorylation of antiapoptotic Bcl-2 proteins acts as a key link coupling mitotic arrest to apoptosis. 相似文献
10.
The crystal structure of human plasminogen kringle 4 (PGK4) has been solved by molecular replacement using the bovine prothrombin kringle 1 (PTK1) structure as a model and refined by restrained least-squares methods to an R factor of 14.2% at 1.9-A resolution. The K4 structure is similar to that of PTK1, and an insertion of one residue at position 59 of the latter has minimal effect on the protein folding. The PGK4 structure is highly stabilized by an internal hydrophobic core and an extensive hydrogen-bonding network. Features new to this kringle include a cis peptide bond at Pro30 and the presence of two alternate, perpendicular, and equally occupied orientations for the Cys75 side chain. The K4 lysine-binding site consists of a hydrophobic trough formed by the Trp62 and Trp72 indole rings, with anionic (Asp55/Asp57) and cationic (Lys35/Arg71) charge pairs at either end. With the adjacent Asp5 and Arg32 residues, these result in triply charged anionic and cationic clusters (pH of crystals at 6.0), which, in addition to the unusually high accessibility of the Trp72 side chain, serve as an obvious marker of the binding site on the K4 surface. A complex intermolecular interaction occurs between the binding sites of symmetry-related molecules involving a highly ordered sulfate anion of solvation in which the Arg32 side chain of a neighboring kringle occupies the binding site. 相似文献