首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   32篇
  国内免费   9篇
  2021年   4篇
  2018年   4篇
  2017年   3篇
  2015年   19篇
  2014年   15篇
  2013年   16篇
  2012年   21篇
  2011年   20篇
  2010年   14篇
  2009年   14篇
  2008年   7篇
  2007年   9篇
  2006年   13篇
  2005年   7篇
  2004年   13篇
  2003年   12篇
  2002年   5篇
  2001年   5篇
  2000年   9篇
  1999年   9篇
  1998年   11篇
  1997年   8篇
  1996年   5篇
  1995年   4篇
  1994年   6篇
  1993年   4篇
  1992年   5篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1977年   2篇
  1975年   2篇
  1974年   5篇
  1972年   6篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1968年   3篇
  1967年   2篇
  1966年   2篇
  1954年   3篇
排序方式: 共有352条查询结果,搜索用时 15 毫秒
1.
Evolution of Sickness and Healing. Horacio Fábrega Jr. Berkeley: University of California Press, 1997 (cloth), xv. 364pp.  相似文献   
2.
3.
4.
Portable light-baffled underwater photometers have been designed for the measurement of dinoflagellate bioluminescence by day and night. Maximal light emission is obtained by mechanical stimulation in a defined volume. The pump which stimulates the dinoflagellates also constantly replenishes the sample volume so that continuous measurements are possible. Evidence for both diurnal variation and vertical migration is presented. Using luminous bacteria for calibration a single dinoflagellate has been found to emit of the order of 1010 light quanta per flash. The technique suggests that large scale mapping of bioluminescence is feasible.  相似文献   
5.
The use of reporter genes to characterise sequence elements that act to regulate gene expression in transgenic plants has been vital to the development of foreign gene expression strategies for use in cereal transformation. ThegusA locus ofEscherichia coli, which encodes the enzyme-glucuronidase (GUS), is by far the most popular reporter gene used in plant transformation. In this paper we extend the utility of the GUS reporter gene system in cereal transformation by describing and evaluating a number of novel constructs suitable for use in direct gene transfer experiments. These plasmids are all available from the Molecular Genetic Resource Service of the Center for the Application of Molecular Biology to International Agriculture.  相似文献   
6.
J Kyozuka  D McElroy  T Hayakawa  Y Xie  R Wu    K Shimamoto 《Plant physiology》1993,102(3):991-1000
A previously isolated rice (Oryza sativa) rbcS gene was further characterized. This analysis revealed specific sequences in the 5' regulatory region of the rice rbcS gene that are conserved in rbcS genes of other monocotyledonous species. In transgenic rice plants, we examined the expression of the beta-glucuronidase (gusA) reporter gene directed by the 2.8-kb promoter region of the rice rbcS gene. To examine differences in the regulation of monocotyledonous and dicotyledonous rbcS promoters, the activity of a tomato rbcS promoter was also investigated in transgenic rice plants. Our results indicated that both rice and tomato rbcS promoters confer mesophyll-specific expression of the gusA reporter gene in transgenic rice plants and that this expression is induced by light. However, the expression level of the rice rbcS-gusA gene was higher than that of the tomato rbcS-gusA gene, suggesting the presence of quantitative differences in the activity of these particular monocotyledonous and dicotyledonous rbcS promoters in transgenic rice. Histochemical analysis of rbcS-gusA gene expression showed that the observed light induction was only found in mesophyll cells. Furthermore, it was demonstrated that the light regulation of rice rbcS-gusA gene expression was primarily at the level of mRNA accumulation. We show that the rice rbcS gene promoter should be useful for expression of agronomically important genes for genetic engineering of monocotyledonous species.  相似文献   
7.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
8.
Agrobacterium tumefaciens-mediated barley transformation   总被引:26,自引:2,他引:24  
Genetically transformed barley was produced by eco-cultivating immature embryo explants with Agrobacterium tumefaciens carrying a binary vector coding for chimaeric bacterial genes, bar and gus , and selecting for bialaphos-resistant cultures from which plants were regenerated. Integration of both genes was confirmed by gel blot hybridization analysis of DNA from the transformed plants and their progenies. From 1282 embryos, plants were recovered for 54 independently transformed lines, giving a transformation efficiency of 4.2%. Transgene numbers in the different lines ranged from single copy insertion to at least ten copies. Sixteen out of 18 plants grown to maturity were fully fertile. Both marker genes, bar and gus , were expressed and co-segregated in the T1 progeny plants. In the majority of cases, the genes showed Mendelian segregation predicted for transgene insertion at a single locus. In one family with multiple transgene insertions, molecular analysis of T1 and T2 plants suggested that the T-DNA had inserted at two unlinked loci.  相似文献   
9.
Molecular phylogeny and divergence times of drosophilid species   总被引:32,自引:15,他引:17  
The phylogenetic relationships and divergence times of 39 drosophilid species were studied by using the coding region of the Adh gene. Four genera--Scaptodrosophila, Zaprionus, Drosophila, and Scaptomyza (from Hawaii)--and three Drosophila subgenera--Drosophila, Engiscaptomyza, and Sophophora--were included. After conducting statistical analyses of the nucleotide sequences of the Adh, Adhr (Adh-related gene), and nuclear rRNA genes and a 905-bp segment of mitochondrial DNA, we used Scaptodrosophila as the outgroup. The phylogenetic tree obtained showed that the first major division of drosophilid species occurs between subgenus Sophophora (genus Drosophila) and the group including subgenera Drosophila and Engiscaptomyza plus the genera Zaprionus and Scaptomyza. Subgenus Sophophora is then divided into D. willistoni and the clade of D. obscura and D. melanogaster species groups. In the other major drosophilid group, Zaprionus first separates from the other species, and then D. immigrans leaves the remaining group of species. This remaining group then splits into the D. repleta group and the Hawaiian drosophilid cluster (Hawaiian Drosophila, Engiscaptomyza, and Scaptomyza). Engiscaptomyza and Scaptomyza are tightly clustered. Each of the D. repleta, D. obscura, and D. melanogaster groups is monophyletic. The splitting of subgenera Drosophila and Sophophora apparently occurred about 40 Mya, whereas the D. repleta group and the Hawaiian drosophilid cluster separated about 32 Mya. By contrast, the splitting of Engiscaptomyza and Scaptomyza occurred only about 11 Mya, suggesting that Scaptomyza experienced a rapid morphological evolution. The D. obscura and D. melanogaster groups apparently diverged about 25 Mya. Many of the D. repleta group species studied here have two functional Adh genes (Adh-1 and Adh-2), and these duplicated genes can be explained by two duplication events.   相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号