首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   47篇
  285篇
  2024年   2篇
  2022年   4篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2016年   7篇
  2015年   7篇
  2014年   16篇
  2013年   10篇
  2012年   11篇
  2011年   21篇
  2010年   9篇
  2009年   7篇
  2008年   16篇
  2007年   12篇
  2006年   8篇
  2005年   8篇
  2004年   11篇
  2003年   13篇
  2002年   8篇
  2001年   8篇
  2000年   3篇
  1999年   10篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1995年   4篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1985年   3篇
  1983年   6篇
  1982年   3篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   3篇
  1970年   2篇
  1968年   2篇
  1961年   2篇
  1956年   1篇
  1950年   1篇
  1940年   1篇
  1939年   1篇
  1936年   1篇
  1926年   1篇
排序方式: 共有285条查询结果,搜索用时 0 毫秒
1.
  总被引:2,自引:0,他引:2  
Foamy viruses (FV) are unusual retroviruses that differ in many aspects of their life cycle from the orthoretroviruses such as human immunodeficiency virus. Similar to Mason–Pfizer monkey virus (MPMV), FV assemble into capsids intracellularly. The capsids are then transported to a cellular membrane for acquisition of envelope (Env) glycoproteins and budding. However, unlike MPMV, budding of FV is dependent upon the presence of Env. Previous work suggested that FV Env proteins are localized to the endoplasmic reticulum (ER) where budding takes place. However, very little was known about the details of FV assembly. We have used immunofluorescence and electron microscopy to visualize the intracellular location of FV assembly and budding. We have found that, as in the case of MPMV, FV capsids assemble at a pericentriolar site in the cytoplasm. Surprisingly, FV Env is mostly absent from this site and, contrary to expectations, FV capsid structural protein (Gag) is absent from the ER. Gag and Env only co-localize at the trans -Golgi network, suggesting that Env–Gag interactions that are required for viral egress from the cell, occurs at this site. Finally, inhibitor studies suggest an important role of microtubule networks for foamy viral assembly and budding.  相似文献   
2.
    
The effectiveness and accuracy of detection using environmental DNA (eDNA) is dependent on understanding the influence laboratory methods such as DNA extraction and PCR strategies have on detection probability. Ideally choice of sampling and extraction method will maximize eDNA yield and detection probability. Determining the survey effort required to reach a satisfactory detection probability (via increased PCR replicates or more sampling) could compensate for a lower eDNA yield if the sampling and extraction method has other advantages for a study, species or system. I analysed the effect of three different sampling and extraction methods on eDNA yield, detection probability and PCR replication for detecting the endangered freshwater fish Macquaria australasica from water samples. The impact of eDNA concentration, PCR strategy, target amplicon size and two marker regions: 12S (a mitochondrial gene) and 18S (a nuclear gene) was also assessed. The choice of sampling and extraction method and PCR strategy, rather than amplicon size and marker region, had the biggest effect on detection probability and PCR replication. The PCR replication effort required to achieve a detection probability of 0.95, ranged from 2 to 6 PCR replicates depending on the laboratory method used. As all methods yielded eDNA from which M. australasica was detected using the three target amplicons, differences in eDNA yield and detection probability between the three methods could be mitigated by determining the appropriate PCR replication effort. Evaluating the effect sampling and extraction methods will have on the detection probability and determining the laboratory protocols and PCR replication required to maximize detection and minimize false positives and negatives is a useful first step for eDNA occupancy studies.  相似文献   
3.
Retrotransposition of Nonviral RNAs in an Avian Packaging Cell Line   总被引:1,自引:0,他引:1       下载免费PDF全文
Retroviruses produced from the quail packaging cell line SE21Q1b predominantly contain cellular RNAs instead of viral RNAs. These RNAs can be reverse transcribed and integrated into the genomes of newly infected cells and are thereafter referred to as newly formed retrogenes. We investigated whether retrogene formation can occur within SE21Q1b cells themselves and whether this occurs intracellularly or via extracellular reinfection. By using packaging cell line mutants derived from the SE21Q1b provirus and selectable reporter constructs, we found that the process requires envelope glycoproteins and a retroviral packaging signal. Our results suggest that extracellular reinfection is the primary route of retrotransposition of nonviral RNAs.  相似文献   
4.
5.
Summary Genetic studies have demonstrated biparental inheritance of plastids in alfalfa. The ratio of paternal to maternal plastids in the progeny varies according to the genotypes of the parents, which can be classified as strong or weak transmitters of plastids. Previous cytological investigations of generative cells and male gametes have provided no consistent explanation for plastid inheritance patterns among genotypes. However, plastids in the mature egg cells of a strong female genotype (6–4) were found to be more numerous and larger than in mature eggs of a weak female genotype (CUF-B), and the plastids in 6–4 eggs are positioned equally around the nucleus. In CUF-B, the majority of plastids are positioned below (toward the micropyle) the mid level of the nucleus, which is the future division plane of the zygote. Since only the apical portion of the zygote produces the embryo proper, plastids in the basal portion were predicted to become included in the suspensor cells and not be inherited. In the present study, we examined zygotes and a two-celled proembryo from a cross between CUF-B and a strong male genotype (301), a cross that results in over 90% of the progeny possessing paternal plastids only. Our results indicate that the distribution of plastids observed in the CUF-B egg cell is maintained through the first division of the zygote. Further, paternal plastids are similarly distributed; however, within the apical portion of the zygote and in the apical cell of the two-celled proembryo, the number of paternal plastids is typically much greater than the number of maternal plastids. These findings suggest that maternal and paternal plastid distribution within the zygote is a significant factor determining the inheritance of maternal and paternal plastids in alfalfa.  相似文献   
6.
Summary Complete serial ultrathin sections of seven sperm pairs, computer-assisted measurements of cell, nuclear and organelle surface areas and volumes, and three-dimensional imagery were used to demonstrate that a process of cytoplasm and organelle elimination occurs during sperm maturation in barley. The number of mitochondria per sperm cell is reduced by 50%; sperm cell surface area and volume are reduced by 30% and 51% respectively. Mean volume and surface area per mitochondrion are significantly less in mature sperms. No examples of mitochondrial fusion or degeneration were observed within sperm cells. These data, along with observations of plasma membrane apposition and vesiculation within cytoplasmic extensions containing mitochondria, support the proposition that cytoplasm and organelle loss results primarily from the formation of cytoplasmic projections that are subsequently discarded from the sperm cell body. Comparisons of the quantitative data, including the number of mitochondria, indicate that differences between sperm cells of a pair are absent to very slight. Spatial organization within the pollen grain is such that the mature sperms, as well as the sperms and vegetative nucleus, are not in close proximity.  相似文献   
7.
Nonstructural carbohydrates in dormant and afterripened wild oat caryopses   总被引:1,自引:0,他引:1  
Nonstructural carbohydrates were determined in both embryo and endosperm of dormant (nongerminating) and afterripened (germinating) intact caryopses of wild oat ( Avena fatua L.). No changes in endosperm starch or soluble sugar were observed at the onset of germination (18 h). No changes in glucose, fructose, sucrose or starch within dormant or afterripened embryos correlated with onset of visual germination. In afterripened embryos, depletion of raffinose (18 h), stachyose (18 h) and galactose (24 h) was correlated with germination. In contrast, raffinose-family oligosaccharide levels in dormant embryos remained constant for 7 days following imbibition. Germination of isolated dormant embryos on 88 m M galactose-containing media was accompanied by decreased endogenous levels of raffinose and stachyose. Isolated embryos from dormant caryopses incorporated 14C from 14C-fructose into both raffinose and stachyose during 24 h of imbibition. In contrast, no 14C incorporation into stachyose was observed in embryos from afterripened caryopses. No 14C incorporation into raffinose was observed at 18 and 24 h. When in vitro activities of α galactosidase were measured, no temporal differences between dormant or afterripened caryopses were detected in either embryo or endosperm tissue. Although the mechanism associated with differences in utilization of raffinose and stachyose is yet unidentified, alterations in raffinose-family oligosaccharide metabolism in the embryo appear to be a unique prerequisite for afterripening-induced germination.  相似文献   
8.
Chaney ML  Gracey AY 《Molecular ecology》2011,20(14):2942-2954
Mass mortality events occur in natural and cultured communities of bivalve molluscs. The Pacific oyster, Crassostrea gigas, is a dominant species in many intertidal locations as well as an important aquacultured bivalve species, and for the last 50 years, adult oysters have suffered frequent and extreme mass mortality events during summer months. To investigate the molecular changes that precede these mortality events, we employed a novel nonlethal sampling approach to collect haemolymph samples from individual oysters during the period that preceded a mortality event. Microarray-based gene expression screening of the collected haemolymph was used to identify a mortality gene expression signature that distinguished oysters that survived the mortality event from those individuals that died during the event. The signature was cross-validated by comparing two separate episodes of mortality. Here, we report that near-mortality oysters can be distinguished from longer-lived oysters by the elevated expression of genes associated with cell death, lysosomal proteolysis, and cellular assembly and organization. These results show the potential utility of nonlethal sampling approaches for investigating the environmental causes of mortality in natural populations in the field, and for predicting when such events could occur and which individuals will be affected.  相似文献   
9.
DM catalyzes the exchange of peptides bound to Class II major histocompatibility complex (MHC) molecules. Because the dissociation and association components of the overall reaction are difficult to separate, a detailed mechanism of DM catalysis has long resisted elucidation. UV irradiation of DR molecules loaded with a photocleavable peptide (caged Class II MHC molecules) enabled synchronous and verifiable evacuation of the peptide-binding groove and tracking of early binding events in real time by fluorescence polarization. Empty DR molecules generated by photocleavage rapidly bound peptide but quickly resolved into species with substantially slower binding kinetics. DM formed a complex with empty DR molecules that bound peptide with even faster kinetics than empty DR molecules just having lost their peptide cargo. Mathematical models demonstrate that the peptide association rate of DR molecules is substantially higher in the presence of DM. We therefore unequivocally establish that DM contributes directly to peptide association through formation of a peptide-loading complex between DM and empty Class II MHC. This complex rapidly acquires a peptide analogous to the MHC class I peptide-loading complex.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号