首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   15篇
  258篇
  2022年   3篇
  2021年   2篇
  2018年   4篇
  2017年   5篇
  2016年   14篇
  2015年   15篇
  2014年   19篇
  2013年   15篇
  2012年   17篇
  2011年   14篇
  2010年   4篇
  2009年   16篇
  2008年   17篇
  2007年   11篇
  2006年   15篇
  2005年   9篇
  2004年   10篇
  2003年   10篇
  2002年   11篇
  2001年   4篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   5篇
  1992年   6篇
  1991年   2篇
  1990年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有258条查询结果,搜索用时 15 毫秒
1.
The purpose of the study was to examine the influence of the spatial variable magnetic field (induction: 150–300?µT, 80–150?µT, 20–80?µT; frequency 40?Hz) on neuropathic pain after tibial nerve transection. The experiments were carried out on 64 male Wistar C rats. The exposure of animals to magnetic field was performed 1?d/20?min., 5?d/week, for 28?d. Behavioural tests assessing the intensity of allodynia and sensitivity to mechanical and thermal stimuli were conducted 1?d prior to surgery and 3, 7, 14, 21 and 28?d after the surgery. The extent of autotomy was examined. Histological and immunohistochemical analysis was performed. The use of extremely low-frequency magnetic fields of minimal induction values (20–80?µT/40?Hz) decreased pain in rats after nerve transection. The nociceptive sensitivity of healthy rats was not changed following the exposition to the spatial magnetic field of the low frequency. The results of histological and immunohistochemical investigations confirm those findings. Our results indicate that extremely low-frequency magnetic field may be useful in the neuropathic pain therapy.  相似文献   
2.
3.
Starch has great importance in human diet, since it is a heteropolymer of plants, mainly found in roots, as potato, cassava and arrowroots. This carbohydrate is composed by a highly-branched chain: amylopectin; and a linear chain: amylose. The proportion between the chains varies according to the botanical source. Starch hydrolysis is catalyzed by enzymes of the amilolytic system, named amylases. Among the various enzymes of this system, the glucoamylases (EC 3.2.1.3 glucan 1,4-alpha-glucosidases) are the majority because they hydrolyze the glycosidic linkages at the end of starch chains releasing glucose monomers. In this work, a glucoamylase secreted in the culture medium, by the ascomycete Aspergillus brasiliensis, was immobilized in Dietilaminoetil Sepharose-Polyethylene Glycol (DEAE-PEG), since immobilized biocatalysts are more stable in long periods of hydrolysis, and can be recovered from the final product and reused for several cycles. Glucoamylase immobilization has shown great thermal stability improvement over the soluble enzyme, reaching 66% more activity after 6?h at 60?°C, and 68% of the activity after 10 hydrolysis cycles. A simplex centroid experimental mixture design was applied as a tool to characterize the affinity of the immobilized enzyme for different starchy substrates. In assays containing several proportions of amylose, amylopectin and starch, the glucoamylase from A. brasiliensis mainly hydrolyzed the amylopectin chains, showing to have preference by branched substrates.  相似文献   
4.
ABSTRACT

Migration of a fibroblast along a collagen fiber can be regarded as cell locomotion in one-dimension (1D). In this process, a cell protrudes forward, forms a new adhesion, produces traction forces, and releases its rear adhesion in order to advance itself along a path. However, how a cell coordinates its adhesion formation, traction forces, and rear release in 1D migration is unclear. Here, we studied fibroblasts migrating along a line of microposts. We found that when the front of a cell protruded onto a new micropost, the traction force produced at its front increased steadily, but did so without a temporal correlation in the force at its rear. Instead, the force at the front coordinated with a decrease in force at the micropost behind the front. A similar correlation in traction forces also occurred at the rear of a cell, where a decrease in force due to adhesion detachment corresponded to an increase in force at the micropost ahead of the rear. Analysis with a bio-chemo-mechanical model for traction forces and adhesion dynamics indicated that the observed relationship between traction forces at the front and back of a cell is possible only when cellular elasticity is lower than the elasticity of the cellular environment.  相似文献   
5.
6.
Classic cadherins function as adhesion-activated cell signaling receptors. On adhesive ligation, cadherins induce signaling cascades leading to actin cytoskeletal reorganization that is imperative for cadherin function. In particular, cadherin ligation activates actin assembly by the actin-related protein (Arp)2/3 complex, a process that critically affects the ability of cells to form and extend cadherin-based contacts. However, the signaling pathway(s) that activate Arp2/3 downstream of cadherin adhesion remain poorly understood. In this report we focused on the Rho family GTPases Rac and Cdc42, which can signal to Arp2/3. We found that homophilic engagement of E-cadherin simultaneously activates both Rac1 and Cdc42. However, by comparing the impact of dominant-negative Rac1 and Cdc42 mutants, we show that Rac1 is the dominant regulator of cadherin-directed actin assembly and homophilic contact formation. To pursue upstream elements of the Rac1 signaling pathway, we focused on the potential contribution of Tiam1 to cadherin-activated Rac signaling. We found that Tiam1 or the closely-related Tiam2/STEF1 was recruited to cell-cell contacts in an E-cadherin-dependent fashion. Moreover, a dominant-negative Tiam1 mutant perturbed cell spreading on cadherin-coated substrata. However, disruption of Tiam1 activity with dominant-negative mutants or RNA interference did not affect the ability of E-cadherin ligation to activate Rac1. We conclude that Rac1 critically influences cadherin-directed actin assembly as part of a signaling pathway independent of Tiam1. actin cytoskeleton; Cdc42; E-cadherin  相似文献   
7.
It is unknown if, and how, students redefine their sense of school belongingness after negotiating the transition to secondary school. The current study used longitudinal data from 266 students with, and without, disabilities who negotiated the transition from 52 primary schools to 152 secondary schools. The study presents the 13 most significant personal student and contextual factors associated with belongingness in the first year of secondary school. Student perception of school belongingness was found to be stable across the transition. No variability in school belongingness due to gender, disability or household-socio-economic status (SES) was noted. Primary school belongingness accounted for 22% of the variability in secondary school belongingness. Several personal student factors (competence, coping skills) and school factors (low-level classroom task-goal orientation), which influenced belongingness in primary school, continued to influence belongingness in secondary school. In secondary school, effort-goal orientation of the student and perception of their school’s tolerance to disability were each associated with perception of school belongingness. Family factors did not influence belongingness in secondary school. Findings of the current study highlight the need for primary schools to foster belongingness among their students at an early age, and transfer students’ belongingness profiles as part of the hand-over documentation. Most of the factors that influenced school belongingness before and after the transition to secondary are amenable to change.  相似文献   
8.
Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces that were higher than those under static conditions, whereas cells under disturbed flow had lower traction forces. The response in adhesion junction assembly matched closely with changes in traction forces since adherens junctions were larger in size for laminar flow and smaller for disturbed flow. Treating the cells with calyculin-A to increase myosin phosphorylation and traction forces caused an increase in adherens junction size, whereas Y-27362 cause a decrease in their size. Since tugging forces across cell-cell junctions can promote junctional assembly, we developed a novel approach to measure intercellular forces and found that these forces were higher for laminar flow than for static or disturbed flow. The size of adherens junctions and tight junctions matched closely with intercellular forces for these flow conditions. These results indicate that laminar flow can increase cytoskeletal tension while disturbed flow decreases cytoskeletal tension. Consequently, we found that changes in cytoskeletal tension in response to shear flow conditions can affect intercellular tension, which in turn regulates the assembly of cell-cell junctions.  相似文献   
9.

Background

Genetic variants within the major histocompatibility complex (MHC) represent the strongest genetic susceptibility factors for primary sclerosing cholangitis (PSC). Identifying the causal variants within this genetic complex represents a major challenge due to strong linkage disequilibrium and an overall high physical density of candidate variants. We aimed to refine the MHC association in a geographically restricted PSC patient panel.

Methodology/Principal Findings

A total of 365 PSC cases and 368 healthy controls of Scandinavian ancestry were included in the study. We incorporated data from HLA typing (HLA-A, -B, -C, -DRB3, -DRB1, -DQB1) and single nucleotide polymorphisms across the MHC (n = 18,644; genotyped and imputed) alongside previously suggested PSC risk determinants in the MHC, i.e. amino acid variation of DRβ, a MICA microsatellite polymorphism and HLA-C and HLA-B according to their ligand properties for killer immunoglobulin-like receptors. Breakdowns of the association signal by unconditional and conditional logistic regression analyses demarcated multiple PSC associated MHC haplotypes, and for eight of these classical HLA class I and II alleles represented the strongest association. A novel independent risk locus was detected near NOTCH4 in the HLA class III region, tagged by rs116212904 (odds ratio [95% confidence interval] = 2.32 [1.80, 3.00], P = 1.35×10−11).

Conclusions/Significance

Our study shows that classical HLA class I and II alleles, predominantly at HLA-B and HLA-DRB1, are the main risk factors for PSC in the MHC. In addition, the present assessments demonstrated for the first time an association near NOTCH4 in the HLA class III region.  相似文献   
10.
Rab9 is a small GTPase that localizes to the trans‐Golgi Network (TGN) and late endosomes. Its main function has long been connected to the recycling of mannose‐6‐phosphate receptors (MPRs). However, recent studies link Rab9 also to autophagy and lysosome biogenesis. In this paper, using confocal imaging, we characterize for the first time the live dynamics of the Rab9 constitutively active mutant, Rab9Q66L. We find that it localizes predominantly to late endosomes and that its expression in HeLa cells disperses TGN46 and cation‐independent (CI‐MPR) away from the Golgi yet, has no effect on the retrograde transport of CI‐MPR. We also show that CI‐MPR and Rab9 enter the endosomal pathway together at the transition stage between early, Rab5‐positive, and late, Rab7a‐positive, endosomes. CI‐MPR localizes transiently to separate domains on these endosomes, where vesicles carrying CI‐MPR attach and detach within seconds. Taken together, our results demonstrate that Rab9 mediates the delivery of CI‐MPR to the endosomal pathway, entering the maturing endosome at the early‐to‐late transition.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号