首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   12篇
  161篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   5篇
  2015年   10篇
  2014年   15篇
  2013年   8篇
  2012年   11篇
  2011年   13篇
  2010年   5篇
  2009年   7篇
  2008年   10篇
  2007年   10篇
  2006年   9篇
  2005年   7篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1989年   2篇
  1986年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1966年   1篇
排序方式: 共有161条查询结果,搜索用时 15 毫秒
1.
N-Acetylgalactosamine-4-sulphatase (EC 3.1.6.1, G4S) is composed of a 57 kDa species in human liver that dissociates into 43 kDa and 8 kDa subunits under reducing conditions and, when deficient, causes the lysosomal storage disorder, mucopolysaccharidosis type VI. We isolated genomic clones containing the G4S first exon, including the leader peptide and the amino terminus of the 43 kDa polypeptide. Amino-terminal amino acid sequences of the 43 kDa and 8 kDa subunits indicated that the 8 kDa component is linked to the 43 kDa polypeptide by a single disulphide bond, does not contain the mannose-6-phosphate lysosomal targeting signal and is at the carboxyl terminus of G4S.  相似文献   
2.
Summary A deficiency of N-acetylgalactosamine-4-sulphatase (G4S, gene symbol ARSB), results in the accumulation of undegraded substrate and the lysosomal storage disorder, Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI). In situ hybridization using an 3H-labelled human G4S genomic DNA fragment to human metaphase chromosomes localized ARSB to chromosome 5q13–5q14. This location is consistent with, an refines, previous chromosomal assignments based on the expression of human G4S in somatic cell hybrids.  相似文献   
3.
Fossil spinicaudatan taxonomy heavily relies on carapace features (size, shape, ornamentation) and palaeontologists have greatly refined methods to study and describe carapace variability. Whether carapace features alone are sufficient for distinguishing between species of a single genus has remained untested. In our study, we tested common palaeontological methods on 481 individuals of the extant Australian genus Ozestheria that have been previously assigned to ten species based on genetic analysis. All species are morphologically distinct based on geometric morphometrics (p ≤ 0.001), but they occupy overlapping regions in Ozestheria morphospace. Linear discriminant analysis of Fourier shape coefficients reaches a mean model performance of 93.8% correctly classified individuals over all possible 45 pairwise species comparisons. This can be further increased by combining the size and shape datasets. Nine of the ten examined species are clearly sexually dimorphic but male and female morphologies strongly overlap within species with little influence on model performance. Ornamentation is commonly species-diagnostic; seven ornamentation types are distinguished of which six are species-specific while one is shared by four species. A transformation of main ornamental features (e.g. from punctate to smooth) can occur among closely related species suggesting short evolutionary timescales. Our overall results support the taxonomic value of carapace features, which should also receive greater attention in the taxonomy of extant species. The extensive variation in carapace shape and ornamentation is noteworthy and several species would probably have been assigned to different genera or families if these had been fossils, bearing implications for the systematics of fossil Spinicaudata.  相似文献   
4.
Abstract. Habitat fragmentation affects both plants and pollinators. Habitat fragmentation leads to changes in species richness, population number and size, density, and shape, thus to changes in the spatial arrangement of flowers. These changes influence the amount of food for flower-visiting insects and the quantity and quality of pollinations. Seed set in small populations is often reduced and genetic variation is expected but not always found to be low. The majority of studies show that low flower densities have reduced pollination success and higher inbreeding. Density effects are stronger than size effects. Most studies concluded that species richness in flower-visiting insects is directly related to richness in plant species. However, the consequences of low insect species richness for pollination are not always clear, depending on the studied pollinator-plant relationship. The effects of the presence of simultaneously flowering species are highly dependent on the circumstances and may range from competition to facilitation. Other flowering plant species may play a role as stepping stones or corridor in the connection between populations. In the absence of stepping stones even short distances between populations act as strong barriers for gene flow. We illustrate the present review paper with own data collected for three plant species, rare in The Netherlands: Phyteuma spicatum ssp. nigrum (Campanulaceae), Salvia pratensis (Labiatae) and Scabiosa columbaria (Dipsacaceae). The species differ in their breeding systems and in the assemblage of visitor species. Data are shown on the effects of population size on species richness with consequences for seed set. Effects of flower density and isolation on pollen exchange are given. Since plant reproduction depends on the behaviour of individual insects and not on the overall behaviour of the species, the examples all point to individual insects and extrapolate to effects at the species level.  相似文献   
5.
6.
7.
We have previously shown that plectin is recruited into hemidesmosomes through association of its actin-binding domain (ABD) with the first pair of fibronectin type III (FNIII) repeats and a small part of the connecting segment (residues 1328-1355) of the integrin beta4 subunit. Here, we show that two proline residues (P1330 and P1333) in this region of the connecting segment are critical for supporting beta4-mediated recruitment of plectin. Additional binding sites for the plakin domain of plectin on beta4 were identified in biochemical and yeast two-hybrid assays. These sites are located at the end of the connecting segment (residues 1383-1436) and in the region containing the fourth FNIII repeat and the C-tail (residues 1570-1752). However, in cells, these additional binding sites cannot induce the assembly of hemidesmosomes without the interaction of the plectin-ABD with beta4. Because the additional plectin binding sites overlap with sequences that mediate an intramolecular association of the beta4 cytoplasmic domain, we propose that they are not accessible for binding and need to become exposed as the result of the binding of the plectin-ABD to beta4. Furthermore, these additional binding sites might be necessary to position the beta4 cytoplasmic domain for an optimal interaction with other hemidesmosomal components, thereby increasing the efficiency of hemidesmosome assembly.  相似文献   
8.
Endonuclease III, encoded by nth in Escherichia coli, removes thymine glycols (Tg), a toxic oxidative DNA lesion. To determine the biological significance of this repair in mammals, we established a mouse model with mutated mNth1, a homolog of nth, by gene targeting. The homozygous mNth1 mutant mice showed no detectable phenotypical abnormality. Embryonic cells with or without wild-type mNth1 showed no difference in sensitivity to menadione or hydrogen peroxide. Tg produced in the mutant mouse liver DNA by X-ray irradiation disappeared with time, though more slowly than in the wild-type mouse. In extracts from mutant mouse liver, we found, instead of mNTH1 activity, at least two novel DNA glycosylase activities against Tg. One activity is significantly higher in the mutant than in wild-type mouse in mitochondria, while the other is another nuclear glycosylase for Tg. These results underscore the importance of base excision repair of Tg both in the nuclei and mitochondria in mammals.  相似文献   
9.
Plectin is a major component of the cytoskeleton and links the intermediate filament system to hemidesmosomes by binding to the integrin beta4 subunit. Previously, a binding site for beta4 was mapped on the actin-binding domain (ABD) of plectin and binding of beta4 and F-actin to plectin was shown to be mutually exclusive. Here we show that only the ABDs of plectin and dystonin bind to beta4, whereas those of other actin-binding proteins do not. Mutations of the ABD of plectin-1C show that Q131, R138, and N149 are critical for tight binding of the ABD to beta4. These residues form a small cavity, occupied by a well-ordered water molecule in the crystal structure. The beta4 binding pocket partly overlaps with the actin-binding sequence 2 (ABS2), previously shown to be essential for actin binding. Therefore, steric interference may render binding of beta4 and F-actin to plectin mutually exclusive. Finally, we provide evidence indicating that the residues preceding the ABD in plectin-1A and -1C, although unable to mediate binding to beta4 themselves, modulate the binding activity of the ABD for beta4. These studies demonstrate the unique property of the plectin-ABD to bind to both F-actin and beta4, and explain why several other ABD-containing proteins that are expressed in basal keratinocytes are not recruited into hemidesmosomes.  相似文献   
10.

Background

Non adherent bone marrow derived cells (NA-BMCs) have recently been described to give rise to multiple mesenchymal phenotypes and have an impact in tissue regeneration. Therefore, the effects of murine bone marrow derived NA-BMCs were investigated with regard to engraftment capacities in allogeneic and syngeneic stem cell transplantation using transgenic, human CD4+, murine CD4−/−, HLA-DR3+ mice.

Methodology/Principal Findings

Bone marrow cells were harvested from C57Bl/6 and Balb/c wild-type mice, expanded to NA-BMCs for 4 days and characterized by flow cytometry before transplantation in lethally irradiated recipient mice. Chimerism was detected using flow cytometry for MHC-I (H-2D[b], H-2K[d]), mu/huCD4, and huHLA-DR3). Culturing of bone marrow cells in a dexamethasone containing DMEM medium induced expansion of non adherent cells expressing CD11b, CD45, and CD90. Analysis of the CD45+ showed depletion of CD4+, CD8+, CD19+, and CD117+ cells. Expanded syngeneic and allogeneic NA-BMCs were transplanted into triple transgenic mice. Syngeneic NA-BMCs protected 83% of mice from death (n = 8, CD4+ donor chimerism of 5.8±2.4% [day 40], P<.001). Allogeneic NA-BMCs preserved 62.5% (n = 8) of mice from death without detectable hematopoietic donor chimerism. Transplantation of syngeneic bone marrow cells preserved 100%, transplantation of allogeneic bone marrow cells 33% of mice from death.

Conclusions/Significance

NA-BMCs triggered endogenous hematopoiesis and induced faster recovery compared to bone marrow controls. These findings may be of relevance in the refinement of strategies in the treatment of hematological malignancies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号