首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   3篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2001年   2篇
  1998年   4篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
2.
3.
4.
Tyrosine kinases are important regulators of synaptic strength. Here, we describe a key component of the synaptic vesicle release machinery, Munc18‐1, as a phosphorylation target for neuronal Src family kinases (SFKs). Phosphomimetic Y473D mutation of a SFK phosphorylation site previously identified by brain phospho‐proteomics abolished the stimulatory effect of Munc18‐1 on SNARE complex formation (“SNARE‐templating”) and membrane fusion in vitro. Furthermore, priming but not docking of synaptic vesicles was disrupted in hippocampal munc18‐1‐null neurons expressing Munc18‐1Y473D. Synaptic transmission was temporarily restored by high‐frequency stimulation, as well as by a Munc18‐1 mutation that results in helix 12 extension, a critical conformational step in vesicle priming. On the other hand, expression of non‐phosphorylatable Munc18‐1 supported normal synaptic transmission. We propose that SFK‐dependent Munc18‐1 phosphorylation may constitute a potent, previously unknown mechanism to shut down synaptic transmission, via direct occlusion of a Synaptobrevin/VAMP2 binding groove and subsequent hindrance of conformational changes in domain 3a responsible for vesicle priming. This would strongly interfere with the essential post‐docking SNARE‐templating role of Munc18‐1, resulting in a largely abolished pool of releasable synaptic vesicles.  相似文献   
5.
The walleye ( Stizostedion vitreum ) is a North American mesothermal freshwater teleost that spawns once each year in early spring. Walleye spawn randomly over suitable substrates and do not provide any parental protection for eggs or juveniles. The majority of gonadal recrudescence in adult male walleye occurs in the autumn, and walleye testes contain large numbers of viable spermatozoa from late autumn through the spawning season. Adult female walleye exhibit group synchronous ovarian development, and similar to males, the majority of gonadal development occurs in the autumn. Evidence suggests that 17α,20β-dihydroxyprogesterone is the maturational steroid in this species. Simple environmental manipulations coupled with injections of human chorionic gonadotropin can be used to advance spawning in walleye by up to 12 weeks. To spawn and propagate walleye, hatcheries in North America use a wide range of methods that have been developed to meet the needs and conditions present at specific facilities.  相似文献   
6.
In both yellow perch ( Perca flavescens ) and walleye ( Stizostedion vitreum ), females grow significantly faster and reach a larger ultimate size than males. In addition, reproductive development in both of these species can have a significant negative impact on somatic growth and fillet yield. Accordingly, methods for producing monosex female populations and for inducing sterility, have important potential applications for both commercial fish culture and fisheries management. Of the several available methods for producing monosex female populations in fishes (such as yellow perch and walleye) in which females are homogametic, the preferred method (described herein) may be to treat juveniles with androgens to induce phenotypic sex inversion of genetic females, and to subsequently use sperm from these females to fertilize normal eggs. Initial efforts at inducing sterility focused on the direct use of either heat or hydrostatic pressure shocks to produce triploid yellow perch and walleye. The gonadal development of triploid yellow perch and walleye of both sexes is retarded compared to that of diploids, and triploid yellow perch can have higher fillet yields than diploids. The direct use of heat and pressure shocks to induce triploidy in yellow perch, however, has negative effects on growth that are independent of ploidy status. One way to circumvent this problem is to produce triploids by crossing fertile tetraploids with diploids. To date, methods of producing viable tetraploids (beyond the larval stage) have been developed for yellow perch but not for walleye.  相似文献   
7.
This study examines the importance of avian incubation costs as determinants of clutch-size variation by performing clutch-size and brood-size manipulations in the same population of Collared Flycatchers Ficedula albicollis during the same breeding season. In 2 5 cases when three or more clutches of the same size were completed on the same day, we moved two eggs on the day after the last egg had been laid from one randomly selected clutch (C) to another (C) and moved two other eggs from this to a third clutch (C+). In 20 other cases of simultaneously completed clutches of the same size, we moved two randomly selected young from one brood to a second and from that moved two other young to a third (B, B and B+groups). Most females were weighed the day after completion of the clutch and 1–4 days before hatching of the young, and some of them also 10–14 days after hatching of the young. We measured the daily energy expenditure of females incubating manipulated clutches of 4, 6 and 8 eggs by means of the doubly-labelled water (D218O) technique and also recorded their nest attendance. Hatching success of fertilized eggs was reduced in the enlarged clutches compared with control and reduced clutches. Females expired on average 3142.6 ml CO2 and expended 78.6 kJ per day while incubating, which corresponds to a metabolic intensity of 3.3 times BMR. Daily energy expenditure increased with clutch-size due to higher costs while incubating, and not because of changed activity patterns. There were no significant differences in length of incubation, female mass or mass changes between phases for the C, C and C+groups. In both the C and B groups, enlarged broods produced significantly more fledged young than control broods, and those significantly more than reduced broods. Fledgling tarsus-length and mass did not differ significantly between treatments in either the C or B groups. There was no significant difference in breeding success between clutch and brood manipulations. In this season, incubation costs did not entail significant fitness losses, expressed either as fledgling production or female condition. Also, control females could have raised more young to fledging age than they did with no apparent costs.  相似文献   
8.
Lee  YC; Kawasaki  N; Lee  RT; Suzuki  N 《Glycobiology》1998,8(9):849-856
Quantum dye (QD), a macrocyclic europium-chelate, developed as a cytological marker, has never been used for quantitative applications. It would be ideal, however, if the same tracer can be used for both qualitative and quantitative purposes. We have labeled some lectins and neoglycoproteins with QD for the purpose of quantitative analyses in glycobiology, and tested its suitability in three different areas in glycobiology: (1) glycosyltransferase, (2) an animal lectin - mannose- binding protein, and (3) the Gal/GalNAc receptor of rat liver membrane. Usefulness of QD-labeled lectins was amply demonstrated by the quantification of galactosyltransferase activity using QD-soybean agglutinin and QD-RCA120 ( Ricinus communis agglutinin). We also showed that QD-labeled neoglycoproteins, QD-Man-BSA and QD-Gal-BSA, can replace radioiodinated counterparts in the binding assays of animal lectins (serum mannose binding protein and hepatic Gal/GalNAc receptor.) The advantage of QD and other europium labels is that it does not decay as radioiodides do. The long shelf-life results in more consistent results from repeated experiments.   相似文献   
9.
Dopamine-beta-hydroxylase (D beta H) catalyzes the conversion of dopamine to norepinephrine and is released from sympathetic neurons into the circulation. Plasma-D beta H activity varies widely between individuals, and a subgroup of the population has very low activity levels. Mounting evidence suggests that the DBH structural gene is itself the major quantitative-trait locus (QTL) for plasma-D beta H activity, and a single unidentified polymorphism may account for a majority of the variation in activity levels. Through use of both sequencing-based mutational analysis of extreme phenotypes and genotype/phenotype correlations in samples from African American, European American (EA), and Japanese populations, we have identified a novel polymorphism (--1021C-->T), in the 5' flanking region of the DBH gene, that accounts for 35%--52% of the variation in plasma-D beta H activity in these populations. In EAs, homozygosity at the T allele predicted the very low D beta H-activity trait, and activity values in heterozygotes formed an intermediate distribution, indicating codominant inheritance. Our findings demonstrate that --1021C-->T is a major genetic marker for plasma-D beta H activity and provide new tools for investigation of the role of both D beta H and the DBH gene in human disease.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号