首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   8篇
  145篇
  2022年   2篇
  2021年   3篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   7篇
  2011年   5篇
  2010年   8篇
  2009年   6篇
  2008年   2篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1993年   1篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1972年   3篇
排序方式: 共有145条查询结果,搜索用时 0 毫秒
1.
The combined action of electric field (105–107 V · m?1) and light (380–580 nm, 80 W · m?2) activating the photoenergetic reaction of bacteriorhodopsin (BR) in dry films of purple membranes from Halobacterium halobium was studied. A new stimulating effect of the field on the BR412 intermediate accumulation in the normal photochromic cycle of BR570 has been observed. The formation of the product BR412 is supposed to be accompanied by specific rearrangements of certain charged, polar and polarizable groups in the BR pigment-protein matrix. Such an intrinsic polarization could be promoted by an external electric field, the displacement vector of those groups being oriented in the direction of the field. The dielectric polarization properties of the purple membranes have been demonstrated by electret-thermal analysis.  相似文献   
2.
The predicted Exigobacterium sibiricum bacterirhodopsin gene was amplified from an ancient Siberian permafrost sample. The protein bacteriorhodopsin from Exiguobacterium sibiricum (ESR) encoded by this gene was expressed in Escherichia coli membrane. ESR bound all-trans-retinal and displayed an absorbance maximum at 534 nm without dark adaptation. The ESR photocycle is characterized by fast formation of an M intermediate and the presence of a significant amount of an O intermediate. Proteoliposomes with ESR incorporated transport protons in an outward direction leading to medium acidification. Proton uptake at the cytoplasmic surface of these organelles precedes proton release and coincides with M decay/O rise of the ESR.  相似文献   
3.
Phycobilisome (PBS) is a giant photosynthetic antenna associated with the thylakoid membranes of cyanobacteria and red algae. PBS consists of two domains: central core and peripheral rods assembled of disc-shaped phycobiliprotein aggregates and linker polypeptides. The study of the PBS architecture is hindered due to the lack of the data on the structure of the large ApcE-linker also called LCM. ApcE participates in the PBS core stabilization, PBS anchoring to the photosynthetic membrane, transfer of the light energy to chlorophyll, and, very probably, the interaction with the orange carotenoid protein (OCP) during the non-photochemical PBS quenching. We have constructed the cyanobacterium Synechocystis sp. PCC 6803 mutant lacking 235 N-terminal amino acids of the chromophorylated PBLCM domain of ApcE. The altered fluorescence characteristics of the mutant PBSs indicate that the energy transfer to the terminal emitters within the mutant PBS is largely disturbed. The PBSs of the mutant become unable to attach to the thylakoid membrane, which correlates with the identified absence of the energy transfer from the PBSs to the photosystem II. At the same time, the energy transfer from the PBS to the photosystem I was registered in the mutant cells and seems to occur due to the small cylindrical CpcG2-PBSs formation in addition to the conventional PBSs. In contrast to the wild type Synechocystis, the OCP-mediated non-photochemical PBS quenching was not registered in the mutant cells. Thus, the PBLCM domain takes part in formation of the OCP binding site in the PBS.  相似文献   
4.
Energy transfer pathways between phycobiliproteins chromophores in the phycobilisome (PBS) core of the cyanobacterium Synechocystis sp. PCC 6803 were investigated. The computer 3D model of the PBS core with determination of chromophore to chromophore distance was created. Our kinetic equations based on this model allowed us to describe the relative intensities of the fluorescence emission of the short(peaked at 665 nm) and long-wavelength (peaked at 680 nm) chromophores in the PBS core at low and room temperatures. The difference of emissions of the PBS core at 77 and 293 K are due to the back energy transfer, which is observed at room temperature and is negligible at 77 K.  相似文献   
5.

Background  

Parkinson's disease (PD) is the second most common neurodegenerative disorder. As there is no definitive diagnostic test, its diagnosis is based on clinical criteria. Recently transcranial duplex scanning (TCD) of the substantia nigra in the brainstem has been proposed as an instrument to diagnose PD. We and others have found that TCD scanning of substantia nigra duplex is a relatively accurate diagnostic instrument in patients with parkinsonian symptoms. However, all studies on TCD so far have involved well-defined, later-stage PD patients, which will obviously lead to an overestimate of the diagnostic accuracy of TCD.  相似文献   
6.
Effects of extraction of the H-subunit from Rhodobacter sphaeroides photosynthetic reaction centers (RC) on the characteristics of the photoinduced conformational transition associated with electron transfer between photoactive bacterio-chlorophyll and primary quinone acceptor were studied. Extraction of the H-subunit (i.e., the subunit that is not directly bound to electron transfer cofactors) was found to have a significant effect on the dynamic properties of the protein–pigment complex of the RC, the effect being mediated by modification of parameters of the relaxation processes associated with charge separation.  相似文献   
7.
The temperature dependence of dark reduction of photooxidized cytochrome c was studied in isolated preparations of Rhodopseudomonas viridis reaction centers. Within the range from room temperature to 260 K this process was found to be mediated by thermal diffusion of exogenous donor molecules, whereas at lower temperatures photooxidized cytochrome is reduced as a result of indirect recombination with photoreduced primary quinone acceptor. Kinetic simulation allowed certain thermodynamic characteristics of this reaction to be calculated. To the first approximation, these characteristics correlate with the estimates obtained from the results of direct redox titration.  相似文献   
8.
9.
Whole cells, chlorosome-membrane complexes and isolated chlorosomes of the green mesophilic filamentous bacterium Oscillochloris trichoides, representing a new family of the green bacteria Oscillochloridaceae, were studied by optical spectroscopy and electron microscopy. It was shown that the main light-harvesting pigment in the chlorosome is BChl c. The presence of BChl a in chlorosomes was visualized only by pigment extraction and fluorescence spectroscopy at 77 K. The molar ratio BChl c: BChl a in chlorosomes was found to vary from 70:1 to 110:1 depending on light intensity used for cell growth. Micrographs of negatively and positively stained chlorosomes as well as of ultrathin sections of the cells were obtained and used for morphometric measurements of chlorosomes. Our results indicated that Osc. trichoides chlorosomes resemble, in part, those from Chlorobiaceae species, namely, in some spectral features of their absorption, fluorescence, CD spectra, pigment content as well as the morphometric characteristics. Additionally, it was shown that similar to Chlorobiaceae species, the light-harvesting chlorosome antenna of Osc. trichoides exhibited a highly redox-dependent BChl c fluorescence. At the same time, the membrane B805–860 BChl a antenna of Osc. trichoides is close to the membrane B808–866 BChl a antenna of Chloroflexaceae species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
10.
The effect of Dipyridamole (10(-6)-10(-3) M) on the photomobilized electron transport in the system of quinone acceptors Q(A)-Q(B) of isolated photosynthetic reaction centers of Rhodobacter sphaeroides and on its temporary stabilization on Q(B) was studied. Depending on the type of the detergent present in the reaction center (lauryl dimethylamine oxide, Triton X-100, sodium dodecyl sulfate, and sodium cholate), dipyridamole could increase the time of the electron transfer to Q(B). The dipyridamole effect on the efficiency of the electron stabilization on Q(B) for reaction centers with different detergents was revealed in slowing down the process of dark reduction of photoactive bacteriochlorophyll from Q(B) at initial concentrations of added dipyridamole (10(-6)-10(-5) M) with following acceleration of the process at the dipyridamole concentrations of 10(-4)-10(-3) M. The pH lowering from 6.8-7.0 to 5.9-6.0 increased the dipyridamole effect. The possibility of the dipyridamole effect on the structural-dynamic state of the reaction center complex, including its hydrogen bond system, which influences the studied parameters of functional activity, is suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号