首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   4篇
  137篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   6篇
  2011年   10篇
  2010年   4篇
  2009年   2篇
  2008年   11篇
  2007年   9篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1993年   3篇
  1989年   1篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
  1958年   1篇
  1957年   2篇
  1951年   2篇
  1943年   7篇
  1941年   2篇
  1940年   5篇
  1939年   4篇
  1938年   5篇
  1935年   1篇
排序方式: 共有137条查询结果,搜索用时 0 毫秒
1.
Microtubules are supramolecular structures that make up the cytoskeleton and strongly affect the mechanical properties of the cell. Within the cytoskeleton filaments, the microtubule (MT) exhibits by far the highest bending stiffness. Bending stiffness depends on the mechanical properties and intermolecular interactions of the tubulin dimers (the MT building blocks). Computational molecular modeling has the potential for obtaining quantitative insights into this area. However, to our knowledge, standard molecular modeling techniques, such as molecular dynamics (MD) and normal mode analysis (NMA), are not yet able to simulate large molecular structures like the MTs; in fact, their possibilities are normally limited to much smaller protein complexes. In this work, we developed a multiscale approach by merging the modeling contribution from MD and NMA. In particular, MD simulations were used to refine the molecular conformation and arrangement of the tubulin dimers inside the MT lattice. Subsequently, NMA was used to investigate the vibrational properties of MTs modeled as an elastic network. The coarse-grain model here developed can describe systems of hundreds of interacting tubulin monomers (corresponding to up to 1,000,000 atoms). In particular, we were able to simulate coarse-grain models of entire MTs, with lengths up to 350 nm. A quantitative mechanical investigation was performed; from the bending and stretching modes, we estimated MT macroscopic properties such as bending stiffness, Young modulus, and persistence length, thus allowing a direct comparison with experimental data.  相似文献   
2.
Knowledge of the exact cell content of frozen tissue samples is of growing importance in genomic research. We developed a microaliquoting technique to measure and optimize the cell composition of frozen tumor specimens for molecular studies. Frozen samples of 31 mesothelioma cases were cut in alternating thin and thick sections. Thin sections were stained and evaluated visually. Thick sections, i.e., microaliquots, were annotated using bordering stained sections. A range of cellular heterogeneity was observed among and within samples. Precise annotation of samples was obtained by integration and compared to conventional single face and “front and back” section estimates of cell content. Front and back estimates were more highly correlated with block annotation by microaliquoting than were single face estimates. Both methods yielded discrepant estimates, however, and for some studies may not adequately account for the heterogeneity of mesothelioma or other malignancies with variable cellular composition. High yield and quality RNA was extracted from precision annotated, tumor-enriched subsamples prepared by combining individual microaliquots with the highest tumor cellularity estimates. Microaliquoting provides accurate cell content annotation and permits genomic analysis of enriched subpopulations of cells without fixation or amplification.  相似文献   
3.
The normal diffusion regime of many small and medium-sized molecules occurs on a time scale that is too long to be studied by atomistic simulations. Coarse-grained (CG) molecular simulations allow to investigate length and time scales that are orders of magnitude larger compared to classical molecular dynamics simulations, hence providing a valuable approach to span time and length scales where normal diffusion occurs. Here we develop a novel multi-scale method for the prediction of diffusivity in polymer matrices which combines classical and CG molecular simulations. We applied an atomistic-based method in order to parameterize the CG MARTINI force field, providing an extension for the study of diffusion behavior of penetrant molecules in polymer matrices. As a case study, we found the parameters for benzene (as medium sized penetrant molecule whose diffusivity cannot be determined through atomistic models) and Poly (vinyl alcohol) (PVA) as polymer matrix. We validated our extended MARTINI force field determining the self diffusion coefficient of benzene (2.27·10−9 m2 s−1) and the diffusion coefficient of benzene in PVA (0.263·10−12 m2 s−1). The obtained diffusion coefficients are in remarkable agreement with experimental data (2.20·10−9 m2 s−1 and 0.25·10−12 m2 s−1, respectively). We believe that this method can extend the application range of computational modeling, providing modeling tools to study the diffusion of larger molecules and complex polymeric materials.  相似文献   
4.
5.
In this work we used molecular simulations to investigate the elastic properties of collagen single chain and triple helix with the aim of understanding its features starting from first principles. We analysed ideal collagen peptides, homotrimeric and heterotrimeric collagen type I and pathological models of collagen. Triple helices were found much more rigid than single chains, thus enlightening the important role of interchain stabilizing forces, like hydrophobic interaction and hydrogen bonds. We obtained Young's moduli close to 4.5GPa for the ideal model of collagen and for the physiological heterotrimer, while the physiological homotrimer presented a Young's modulus of 2.51GPa, that can be related to a mild form of Osteogenesis Imperfecta in which only the homotrimeric form of collagen type I is produced. Otherwise, the pathological model (presenting a glycine to alanine substitution) showed an elastic modulus of 4.32GPa, thus only slightly lower than the ideal model. This suggests that this mutation only slightly affects the mechanical properties of the collagen molecule, but possibly acts on an higher scale, such as the packing of collagen fibrils.  相似文献   
6.
Mutations affecting the biosynthesis of quinolinic acid, a precursor of nicotinamide adenine dinucleotide (NAD) in Escherichia coli K-12, are either near min 17 (nadA mutants) or near min 49 on the chromosome. These nad mutants all exhibit a phenotypic requirement for NAD or one of its immediate precursors. The mutants with lesions near min 49 can be separated into two groups based on in vitro complementation analysis. One group (nadB) exhibits complementation with nadA mutants, whereas the other group fails to do so. The latter group is tentatively designated nadR based on its regulation of the unlinked nadA gene. The nadR gene maps adjacent to nadB between purI and tyrA.  相似文献   
7.
8.
9.
Electrophoretic mobility (EM) and molecular weight (MW) of some allelic variants of α- and β-gliadins contrlled by Gli-2 loci were compared by means of two-dimensional (APAGE × SDS) electrophoresis. Comparison of α-gliadins of the alleles Gli-A2b and Gli-A2p, of β-gliadins of the Gli-B2b and Gli-B2c, and of β-gliadins of the Gli-D2b, Gli-D2c, Gli-D2j, and Gli-D2r indicated that a gliadin with lower EM had, as a rule, bigger MW which is known to depend on the length of the polyglutamine domain of gliadin of α-type. However, allelic variants of the α-gliadin encoded by Gli-D2b and Gli-D2e differ in EM but not in apparent MW. It might be caused by a substitution of some charged/uncharged aminoacids in the polypeptide of gliadin. Allele Gli-B2o which is very frequent in up-to-date common wheat germplasm originated probably by means of unequal crossingover. Some alleles at Gli-A2 is found to control completely different blocks of gliadins and therefore might come to common wheat from different genotypes of the polymorphic diploid donor of the A genome. The results indicate that the reason of the known more vast polymorphism of gliadins controlled by Gli-2 loci as compared with Gli-1 loci is the considerable difference of the structure, first, of Gli-1 and Gli-2 loci (Gli-2 loci have more expressed genes per locus) and, second, of genes encoding gliadins of α- and γ-types (α-gliadins are shown to contain a long polyglutamine sequences highly variable in their length).  相似文献   
10.
Experimental studies on immature tendons have shown that the collagen fibril net is discontinuous. Manifold evidences, despite not being conclusive, indicate that mature tissue is discontinuous as well. According to composite theory, there is no requirement that the fibrils should extend from one end of the tissue to the other; indeed, an interfibrillar matrix with a low elastic modulus would be sufficient to guarantee the mechanical properties of the tendon. Possible mechanisms for the stress-transfer involve the interfibrillar proteoglycans and can be related to the matrix shear stress and to electrostatic non-covalent forces. Recent studies have shown that the glycosaminoglycans (GAGs) bound to decorin act like bridges between contiguous fibrils connecting adjacent fibril every 64-68 nm; this architecture would suggest their possible role in providing the mechanical integrity of the tendon structure. The present paper investigates the ability of decorin GAGs to transfer forces between adjacent fibrils. In order to test this hypothesis the stiffness of chondroitin-6-sulphate, a typical GAG associated to decorin, has been evaluated through the molecular mechanics approach. The obtained GAG stiffness is piecewise linear with an initial plateau at low strains (<800%) and a high stiffness region (3.1 x 10(-11)N/nm) afterwards. By introducing the calculated GAG stiffness in a multi-fibril model, miming the relative mature tendon architecture, the stress-strain behaviour of the collagen fibre was determined. The fibre incremental elastic modulus obtained ranges between 100 and 475 MPa for strains between 2% and 6%. The elastic modulus value depends directly on the fibril length, diameter and inversely on the interfibrillar distance. In particular, according to the obtained results, the length of the fibril is likely to play the major role in determining stiffness in mature tendons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号