排序方式: 共有87条查询结果,搜索用时 15 毫秒
1.
Ras GTPases are binary switches, cycling between an inactive GDP-bound form and an active GTP-bound form at the membrane. They transduce signals into the cytoplasm via effector pathways that regulate cell growth, differentiation and apoptosis. Ras activation is enhanced by guanine nucleotide exchange factors (GEFs); deactivation is accelerated by GTPase-activating proteins (GAPs). Recently, new roles for Ca(2+) and diacylglycerol (DAG) in the control of Ras cycling have emerged with the discovery of a series of novel GEFs and GAPs. These regulators of Ras cycling are likely to play a key role in the information processing of Ca(2+) and DAG signals. 相似文献
2.
3.
Ca(2+) is a universal second messenger that is critical for cell growth and is intimately associated with many Ras-dependent cellular processes such as proliferation and differentiation. Ras is a small GTP binding protein that operates as a molecular switch regulating the control of gene expression, cell growth, and differentiation through a pathway from receptors to mitogen-activated protein kinases (MAPKs). A role for intracellular Ca(2+) in the activation of Ras has been previously demonstrated, e.g., via the nonreceptor tyrosine kinase PYK2 and by Ca(2+)/calmodulin-dependent guanine nucleotide exchange factors (GEFs) such as Ras-GRF; however, there is no Ca(2+)-dependent mechanism for direct inactivation. An important advance toward greater understanding of the complex coordination within the Ras-signaling network is the spatio-temporal analysis of signaling events in vivo. Here, we describe the identification of CAPRI (Ca(2+)-promoted Ras inactivator), a Ca(2+)-dependent Ras GTPase-activating protein (GAP) that switches off the Ras-MAPK pathway following a stimulus that elevates intracellular Ca(2+). Analysis of the spatio-temporal dynamics of CAPRI indicates that Ca(2+) regulates the GAP by a fast C2 domain-dependent translocation mechanism. 相似文献
4.
5.
Heide-Jørgensen MP Iversen M Nielsen NH Lockyer C Stern H Ribergaard MH 《Ecology and evolution》2011,1(4):579-585
The effects of climate change on marine ecosystems and in particular on marine top predators are difficult to assess due to, among other things, spatial variability, and lack of clear delineation of marine habitats. The banks of West Greenland are located in a climate sensitive area and are likely to elicit pronounced responses to oceanographic changes in the North Atlantic. The recent increase in sea temperatures on the banks of West Greenland has had cascading effects on sea ice coverage, residency of top predators, and abundance of important prey species like Atlantic cod (Gadus morhua). Here, we report on the response of one of the top predators in West Greenland; the harbour porpoise (Phocoena phocoena). The porpoises depend on locating high densities of prey species with high nutritive value and they have apparently responded to the general warming on the banks of West Greenland by longer residence times, increased consumption of Atlantic cod resulting in improved body condition in the form of larger fat deposits in blubber, compared to the situation during a cold period in the 1990s. This is one of the few examples of a measurable effect of climate change on a marine mammal population. 相似文献
6.
Synteny on mouse chromosome 5 of homologs for human DNA loci linked to the Huntington disease gene 总被引:4,自引:0,他引:4
S V Cheng G R Martin J H Nadeau J L Haines M Bucan C A Kozak M E MacDonald J L Lockyer F D Ledley S L Woo 《Genomics》1989,4(3):419-426
Comparative mapping in man and mouse has revealed frequent conservation of chromosomal segments, offering a potential approach to human disease genes via their murine homologs. Using DNA markers near the Huntington disease gene on the short arm of chromosome 4, we defined a conserved linkage group on mouse chromosome 5. Linkage analyses using recombinant inbred strains, a standard outcross, and an interspecific backcross were used to assign homologs for five human loci, D4S43, D4S62, QDPR, D4S76, and D4S80, to chromosome 5 and to determine their relationships with previously mapped markers for this autosome. The relative order of the conserved loci was preserved in a linkage group that spanned 13% recombination in the interspecific backcross analysis. The most proximal of the conserved markers on the mouse map, D4S43h, showed no recombination with Emv-1, an endogenous ecotropic virus, in 84 outcross progeny and 19 recombinant inbred strains. Hx, a dominant mutation that causes deformities in limb development, maps approximately 2 cM proximal to Emv-1. Since the human D4S43 locus is less than 1 cM proximal to HD near the telomere of chromosome 4, the murine counterpart of the HD gene might lie between Hx and Emv-1 or D4S43h. Cloning of the region between these markers could generate new probes for conserved human sequences in the vicinity of the HD gene or possibly candidates for the murine counterpart of this human disease locus. 相似文献
7.
C. E. Nichols C. Johnson H. K. Lamb M. Lockyer I. G. Charles A. R. Hawkins D. K. Stammers 《Acta Crystallographica. Section F, Structural Biology Communications》2007,63(11):922-928
The YjeQ class of P‐loop GTPases assist in ribosome biogenesis and also bind to the 30S subunit of mature ribosomes. YjeQ ribosomal binding is GTP‐dependent and thought to specifically direct protein synthesis, although the nature of the upstream signal causing this event in vivo is as yet unknown. The attenuating effect of YjeQ mutants on bacterial growth in Escherichia coli makes it a potential target for novel antimicrobial agents. In order to further explore the structure and function of YjeQ, the isolation, crystallization and structure determination of YjeQ from the enterobacterial species Salmonella typhimurium (StYjeQ) is reported. Whilst the overall StYjeQ fold is similar to those of the previously reported Thematoga maritima and Bacillus subtilis orthologues, particularly the GTPase domain, there are larger differences in the three OB folds. Although the zinc‐finger secondary structure is conserved, significant sequence differences alter the nature of the external surface in each case and may reflect varying signalling pathways. Therefore, it may be easier to develop YjeQ‐specific inhibitors that target the N‐ and C‐terminal regions, disrupting the metabolic connectivity rather than the GTPase activity. The availability of coordinates for StYjeQ will provide a significantly improved basis for threading Gram‐negative orthologue sequences and in silico compound‐screening studies, with the potential for the development of species‐selective drugs. 相似文献
8.
Dai Y Walker SA de Vet E Cook S Welch HC Lockyer PJ 《The Journal of biological chemistry》2011,286(22):19905-19916
CAPRI is a member of the GAP1 family of GTPase-activating proteins (GAPs) for small G proteins. It is known to function as an amplitude sensor for intracellular Ca(2+) levels stimulated by extracellular signals and has a catalytic domain with dual RasGAP and RapGAP activities. Here, we have investigated the mechanism that switches CAPRI between its two GAP activities. We demonstrate that CAPRI forms homodimers in vitro and in vivo in a Ca(2+)-dependent manner. The site required for dimerization was pinpointed by deletion and point mutations to a helix motif that forms a hydrophobic face in the extreme C-terminal tail of the CAPRI protein. Deletion of this helix motif abolished dimer formation but did not affect translocation of CAPRI to the plasma membrane upon cell stimulation with histamine. We found that dimeric and monomeric CAPRI coexist in cells and that the ratio of dimeric to monomeric CAPRI increases upon cell stimulation with histamine. Free Ca(2+) at physiologically relevant concentrations was both necessary and sufficient for dimer formation. Importantly, the monomeric and dimeric forms of CAPRI exhibited differential GAP activities in vivo; the wild-type form of CAPRI had stronger RapGAP activity than RasGAP activity, whereas a monomeric CAPRI mutant showed stronger RasGAP than RapGAP activity. These results demonstrate that CAPRI switches between its dual GAP roles by forming monomers or homodimers through a process regulated by Ca(2+). We propose that Ca(2+)-dependent dimerization of CAPRI may serve to coordinate Ras and Rap1 signaling pathways. 相似文献
9.
Walker SA Kupzig S Lockyer PJ Bilu S Zharhary D Cullen PJ 《The Journal of biological chemistry》2002,277(50):48779-48785
Inositol 1,3,4,5-tetrakisphosphate (IP(4)) has been linked to a potential role in the regulation of intracellular free Ca(2+) concentration ([Ca(2+)](i)) following cellular stimulation with agonists that activate phosphoinositide-specific phospholipase C. However, despite many studies, the function of IP(4) remains unclear and indeed there is still some debate over whether it has a function at all. Here we have used various molecular approaches to address whether manipulation of the potential IP(4) receptor, GAP1(IP4BP), affects [Ca(2+)](i) following cellular stimulation. Using single cell imaging, we show that the overexpression of a constitutively active and a potential dominant negative form of GAP1(IP4BP) appear to have no effect on Ca(2+) mobilization or Ca(2+) entry following stimulation of HeLa cells with histamine. In addition, through the use of small interfering RNA duplexes, we have examined the effect of suppressing endogenous GAP1(IP4BP) production on [Ca(2+)](i). In HeLa cells in which the endogenous level of GAP1(IP4BP) has been suppressed by approximately 95%, we failed to observe any effect on Ca(2+) mobilization or Ca(2+) entry following histamine stimulation. Thus, using various approaches to manipulate the function of endogenous GAP1(IP4BP) in intact HeLa cells, we have been unable to observe any detectable effect of GAP1(IP4BP) on [Ca(2+)](i). 相似文献
10.
Laura Dyer Pamela Lockyer Yaxu Wu Arnab Saha Chelsea Cyr Martin Moser Xinchun Pi Cam Patterson 《PloS one》2015,10(9)
Formation of the cardiac valves is an essential component of cardiovascular development. Consistent with the role of the bone morphogenetic protein (BMP) signaling pathway in cardiac valve formation, embryos that are deficient for the BMP regulator BMPER (BMP-binding endothelial regulator) display the cardiac valve anomaly mitral valve prolapse. However, how BMPER deficiency leads to this defect is unknown. Based on its expression pattern in the developing cardiac cushions, we hypothesized that BMPER regulates BMP2-mediated signaling, leading to fine-tuned epithelial-mesenchymal transition (EMT) and extracellular matrix deposition. In the BMPER-/- embryo, EMT is dysregulated in the atrioventricular and outflow tract cushions compared with their wild-type counterparts, as indicated by a significant increase of Sox9-positive cells during cushion formation. However, proliferation is not impaired in the developing BMPER-/- valves. In vitro data show that BMPER directly binds BMP2. In cultured endothelial cells, BMPER blocks BMP2-induced Smad activation in a dose-dependent manner. In addition, BMP2 increases the Sox9 protein level, and this increase is inhibited by co-treatment with BMPER. Consistently, in the BMPER-/- embryos, semi-quantitative analysis of Smad activation shows that the canonical BMP pathway is significantly more active in the atrioventricular cushions during EMT. These results indicate that BMPER negatively regulates BMP-induced Smad and Sox9 activity during valve development. Together, these results identify BMPER as a regulator of BMP2-induced cardiac valve development and will contribute to our understanding of valvular defects. 相似文献