首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   7篇
  国内免费   4篇
  78篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   7篇
  2016年   6篇
  2015年   4篇
  2014年   11篇
  2013年   8篇
  2012年   3篇
  2011年   11篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
排序方式: 共有78条查询结果,搜索用时 0 毫秒
1.
As well as killing pest insects, the rhizosphere competent insect-pathogenic fungus Metarhizium robertsii also boosts plant growth by providing nitrogenous nutrients and increasing resistance to plant pathogens. Plant roots secrete abundant nutrients but little is known about their utilization by Metarhizium spp. and the mechanistic basis of Metarhizium-plant associations. We report here that M. robertsii produces an extracellular invertase (MrInv) on plant roots. Deletion of MrInv (⊿MrInv) reduced M. robertsii growth on sucrose and rhizospheric exudates but increased colonization of Panicum virgatum and Arabidopsis thaliana roots. This could be accounted for by a reduction in carbon catabolite repression in ⊿MrInv increasing production of plant cell wall-degrading depolymerases. A non-rhizosphere competent scarab beetle specialist Metarhizium majus lacks invertase which suggests that rhizospheric competence may be related to the sugar metabolism of different Metarhizium species.  相似文献   
2.
A lack of selectable markers was a hindrance in investigating gene function in Metarhizium robertsii. A reliable Agrobacterium-mediated transformation system based on the use of chlorimuron ethyl as the selectable marker was developed which could serve as a useful tool to inactivate genes involved in insect pathogenicity.  相似文献   
3.

Background

The chemiluminescent microparticle immunoassay (CMIA) is widely used for the quantitative determination of B-type natriuretic peptide (BNP) in human ethylenediaminetetraacetic acid plasma. Rheumatoid factor (RF) is usually thought to result in a positive interference in immunoassays, but it is not clear whether its presence in plasma can lead to interferences in the CMIA of BNP.

Methods

The estimation of BNP recovery was carried out by diluting high-concentration BNP samples with RF-positive or RF-negative plasma at a ratio of 1∶9. The diluted samples were then tested using the ARCHITECT i2000 System and ARCHITECT BNP Reagent Kits and the recovery was then calculated.

Results

When the RF level ranged from 48 to 1420 IU/mL, the average recovery of BNP was 79.29% and 91.61% in the RF-positive and RF-negative plasma samples, respectively, and was thus significantly lower in the group of RF-positive plasma samples than in the group of RF-negative plasma samples. At a dilution of 1∶16, the measured BNP level increased by >36% in six of the seven RF-positive plasma samples. The recovery of BNP increased significantly in the RF-positive plasma samples after pretreatment with IgG-sensitive latex particles. In addition, The BNP recovery was not significantly related to the plasma RF at concentrations ranging from 48 to 2720 IU/mL.

Conclusions

Measurement of BNP by CMIA is susceptible to interference from RF leading to predominantly (but not exclusively) lower results. Pretreatment of samples with blocking reagents is advisable prior to the initiation of denying patient''s necessary treatment.  相似文献   
4.
5.
Hu  Huizhen  Zhang  Ran  Tang  Yiwei  Peng  Chenglang  Wu  Leiming  Feng  Shengqiu  Chen  Peng  Wang  Yanting  Du  Xuezhu  Peng  Liangcai 《Plant molecular biology》2019,101(4-5):389-401
Key message

Overexpression of cotton cellulose synthase like D3 (GhCSLD3) gene partially rescued growth defect of atcesa6 mutant with restored cell elongation and cell wall integrity mainly by enhancing primary cellulose production.

Abstract

Among cellulose synthase like (CSL) family proteins, CSLDs share the highest sequence similarity to cellulose synthase (CESA) proteins. Although CSLD proteins have been implicated to participate in the synthesis of carbohydrate-based polymers (cellulose, pectins and hemicelluloses), and therefore plant cell wall formation, the exact biochemical function of CSLD proteins remains controversial and the function of the remaining CSLD genes in other species have not been determined. In this study, we attempted to illustrate the function of CSLD proteins by overexpressing Arabidopsis AtCSLD2, -3, -5 and cotton GhCSLD3 genes in the atcesa6 mutant, which has a background that is defective for primary cell wall cellulose synthesis in Arabidopsis. We found that GhCSLD3 overexpression partially rescued the growth defect of the atcesa6 mutant during early vegetative growth. Despite the atceas6 mutant having significantly reduced cellulose contents, the defected cell walls and lower dry mass, GhCSLD3 overexpression largely restored cell wall integrity (CWI) and improved the biomass yield. Our result suggests that overexpression of the GhCSLD protein enhances primary cell wall synthesis and compensates for the loss of CESAs, which is required for cellulose production, therefore rescuing defects in cell elongation and CWI.

  相似文献   
6.
用高效薄层扫描法测定了绞股蓝中人参皂甙Rb_1的含量,并进行分离、纯化,再用酸解法水解,测得其结合糖为葡萄糖。  相似文献   
7.

Introduction

Liver cirrhosis (LC) is an advanced liver disease that can develop into hepatocellular carcinoma. Hepatitis B virus (HBV) infection is one of the main causes of LC. Therefore, there is an urgent need for developing a new method to monitor the progression of HBV-related LC (HBV-LC).

Objectives

In this study, we attempted to examine serum metabolic changes in healthy individuals as well as patients with HBV and HBV-LC. Furthermore, potential metabolite biomarkers were identified to evaluate patients progressed from health to HBV-LC.

Methods

Metabolic profiles in the serum of healthy individuals as well as patients with HBV and HBV-LC were detected using an NMR-based metabolomic approach. Univariate and multivariate analyses were conducted to analyze serum metabolic changes during HBV-LC progression. Moreover, potential metabolite biomarkers were explored by receiver operating characteristic curve analysis.

Results

Serum metabolic changes were closely associated with the progression of HBV-LC, mainly involving energy metabolism, protein metabolism, lipid metabolism and microbial metabolism. Serum histidine was identified as a potential biomarker for HBV patients. Acetate, formate, pyruvate and glutamine in the serum were identified as a potential biomarker panel for patients progressed from HBV to HBV-LC. In addition, phenylalanine, unsaturated lipid, n-acetylglycoprotein and acetone in the serum could be considered as a potential common biomarkers panel for these patients.

Conclusion

NMR-based serum metabolomic approach could be a promising tool to monitor the progression of liver disease. Different metabolites may reflect different stages of liver disease.
  相似文献   
8.
Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Since cellulose synthase (CESA) gene was first identified, several dozen CESA mutants have been reported, but almost all mutants exhibit the defective phenotypes in plant growth and development. In this study, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P‐CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%–41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cell walls compared with wild type. CESA co‐IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low‐DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3‐fold and ethanol productivity by 34%–42%. This study has for the first time reported a direct modification for the low‐DP cellulose production that has broad applications in biomass industries.  相似文献   
9.
Plant lodging resistance is an important integrative agronomic trait of grain yield and quality in crops. Although extensin proteins are tightly associated with plant cell growth and cell wall construction, little has yet been reported about their impacts on plant lodging resistance. In this study, we isolated a novel extensin‐like (OsEXTL) gene in rice, and selected transgenic rice plants that expressed OsEXTL under driven with two distinct promoters. Despite different OsEXTL expression levels, two‐promoter‐driven OsEXTL‐transgenic plants, compared to a rice cultivar and an empty vector, exhibited significantly reduced cell elongation in stem internodes, leading to relatively shorter plant heights by 7%–10%. Meanwhile, the OsEXTL‐transgenic plants showed remarkably thickened secondary cell walls with higher cellulose levels in the mature plants, resulting in significantly increased detectable mechanical strength (extension and pushing forces) in the mature transgenic plants. Due to reduced plant height and increased plant mechanical strength, the OsEXTL‐transgenic plants were detected with largely enhanced lodging resistances in 3 years field experiments, compared to those of the rice cultivar ZH11. In addition, despite relatively short plant heights, the OsEXTL‐transgenic plants maintain normal grain yields and biomass production, owing to their increased cellulose levels and thickened cell walls. Hence, this study demonstrates a largely improved lodging resistance in the OsEXTL‐transgenic rice plants, and provides insights into novel extensin functions in plant cell growth and development, cell wall network construction and wall structural remodelling.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号