首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218篇
  免费   74篇
  292篇
  2021年   3篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   4篇
  2012年   12篇
  2011年   13篇
  2010年   3篇
  2009年   6篇
  2008年   7篇
  2007年   6篇
  2006年   10篇
  2005年   7篇
  2004年   12篇
  2003年   8篇
  2002年   4篇
  2001年   7篇
  2000年   8篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1993年   4篇
  1992年   2篇
  1991年   48篇
  1990年   9篇
  1989年   7篇
  1986年   2篇
  1985年   4篇
  1983年   3篇
  1982年   2篇
  1980年   4篇
  1979年   3篇
  1978年   5篇
  1977年   3篇
  1976年   6篇
  1975年   7篇
  1974年   9篇
  1973年   4篇
  1971年   3篇
  1970年   5篇
  1969年   4篇
  1968年   1篇
  1966年   3篇
  1965年   3篇
  1961年   1篇
  1959年   2篇
  1956年   2篇
排序方式: 共有292条查询结果,搜索用时 15 毫秒
1.
2.
Linking foraging decisions to residential yard bird composition   总被引:1,自引:0,他引:1  
SB Lerman  PS Warren  H Gan  E Shochat 《PloS one》2012,7(8):e43497
Urban bird communities have higher densities but lower diversity compared with wildlands. However, recent studies show that residential urban yards with native plantings have higher native bird diversity compared with yards with exotic vegetation. Here we tested whether landscape designs also affect bird foraging behavior. We estimated foraging decisions by measuring the giving-up densities (GUD; amount of food resources remaining when the final forager quits foraging on an artificial food patch, i.e seed trays) in residential yards in Phoenix, AZ, USA. We assessed how two yard designs (mesic: lush, exotic vegetation; xeric: drought-tolerant and native vegetation) differed in foraging costs. Further, we developed a statistical model to calculate GUDs for every species visiting the seed tray. Birds foraging in mesic yards depleted seed trays to a lower level (i.e. had lower GUDs) compared to birds foraging in xeric yards. After accounting for bird densities, the lower GUDs in mesic yards appeared largely driven by invasive and synanthropic species. Furthermore, behavioral responses of individual species were affected by yard design. Species visiting trays in both yard designs had lower GUDs in mesic yards. Differences in resource abundance (i.e., alternative resources more abundant and of higher quality in xeric yards) contributed to our results, while predation costs associated with foraging did not. By enhancing the GUD, a common method for assessing the costs associated with foraging, our statistical model provided insights into how individual species and bird densities influenced the GUD. These differences we found in foraging behavior were indicative of differences in habitat quality, and thus our study lends additional support for native landscapes to help reverse the loss of urban bird diversity.  相似文献   
3.
Summary A collection of 2,000 lambda phage-carrying human single-copy inserts (> 700 bp) were isolated from two chromosome-3 flow-sorted libraries. The single-copy DNA fragments were first sorted into 3p and 3q locations and about 700 3p fragments were regionally mapped using a deletion mapping panel comprised of two humanhamster and two-human-mouse cell hybrids, each containing a chromosome 3 with different deletions in the short arm. The hybrids were extensively mapped with a set of standard 3p markers physically localized or ordered by linkage. The deletion mapping panel divided the short arm into five distinct subregions (A-E). The 3p fragments were distributed on 3p regions as follows: region A, 26%; B, 31%; C, 4%; D, 4% and E, 35%. We screened 300 single-copy DNA fragments from the distal part of 3p (regions A and B) with ten restriction endonucleases for their ability to detect restriction fragment length polymorphisms (RFLPs). Of these fragments 110 (36%) were found to detect useful RFLPs: 35% detected polymorphisms with frequency of heterozygosity of 40% or higher, and 25% with frequency of 30% or higher. All polymorphisms originated from single loci and most of them were of the base pair substitution type. These RFLP markers make it possible to construct a fine linkage map that will span the distal part of chromosome 3p and encompasses the von Hippel-Lindau disease locus. The large number of single-copy fragments (2,000) spaced every 100–150 kb on chromosome 3 will make a significant contribution to mapping and sequencing the entire chromosome 3. The 300 conserved chromosome 3 probes will increase the existing knowledge of man-mouse homologies.  相似文献   
4.
5.
6.
7.

Background

The ChickRH6 whole chicken genome radiation hybrid (RH) panel recently produced has already been used to build radiation hybrid maps for several chromosomes, generating comparative maps with the human and mouse genomes and suggesting improvements to the chicken draft sequence assembly. Here we present the construction of a RH map of chicken chromosome 2. Markers from the genetic map were used for alignment to the existing GGA2 (Gallus gallus chromosome 2) linkage group and EST were used to provide valuable comparative mapping information. Finally, all markers from the RH map were localised on the chicken draft sequence assembly to check for eventual discordances.

Results

Eighty eight microsatellite markers, 10 genes and 219 EST were selected from the genetic map or on the basis of available comparative mapping information. Out of these 317 markers, 270 gave reliable amplifications on the radiation hybrid panel and 198 were effectively assigned to GGA2. The final RH map is 2794 cR6000 long and is composed of 86 framework markers distributed in 5 groups. Conservation of synteny was found between GGA2 and eight human chromosomes, with segments of conserved gene order of varying lengths.

Conclusion

We obtained a radiation hybrid map of chicken chromosome 2. Comparison to the human genome indicated that most of the 8 groups of conserved synteny studied underwent internal rearrangements. The alignment of our RH map to the first draft of the chicken genome sequence assembly revealed a good agreement between both sets of data, indicative of a low error rate.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号