首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   8篇
  2012年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2003年   2篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1978年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Carrier-induced epitopic suppression is initiated through clonal dominance   总被引:10,自引:0,他引:10  
Injection of mice with an immunogenic dose of carrier followed by immunization with hapten-carrier conjugate selectively suppresses anti-hapten antibody response. Previous studies have proposed that this epitopic suppression is related to the induction of carrier-specific Ts cells which in turn could inhibit selectively anti-hapten response. In the present study, we propose that the epitopic suppression is in fact due to clonal dominance. Immunization with a carrier such as tetanus toxoid induces a clonal expansion of carrier-specific B cells, thus decreasing the probability of hapten-specific B cells to react with the Ag. Increasing the density of the TNP-hapten on the conjugate has totally prevented the induction of the epitopic suppression. Moreover, using low hapten-carrier concentrations to challenge carrier-primed mice has enhanced the induction of the suppression. Finally, priming hapten-specific B cells before carrier/hapten-carrier immunization has also abrogated the suppression. The results of these experiments support the view that epitopic suppression is induced through the expansion of the clones specific for the carrier epitopes and resulted from intra-molecular antigenic competition between hapten and carrier epitopes. Based on these findings a regulatory role is proposed for B cells, where through their capacity to process and present antigen, they would exercise a strong influence on the selection of immune responses.  相似文献   
2.
With the use of an in vitro complementation assay to measure activity, the gene 4 protein of bacteriophage T7 has been purified 1000-fold to yield a nearly homogeneous protein. The purified gene 4 protein is a single polypeptide having a molecular weight of 58,000. In addition to being essential for T7 DNA replication in vivo and in vitro, the gene 4 protein is required for DNA synthesis by the purified T7 DNA polymerase on duplex T7 DNA templates. In the absence of ribonucleoside 5'-triphosphates, DNA synthesis by the gene 4 protein and the T7 DNA polymerase is dependent on phosphodiester bond interruptions containing 3'-hydroxyl groups (nicks) in the duplex DNA. The reaction is specific for the T7 DNA polymerase, but any duplex DNA containing nicks can serve as template. The Km for nicks in the reaction is 3 x 10(-10) M.  相似文献   
3.
mutS mutators accelerate the bacterial mutation rate 100- to 1,000-fold and relax the barriers that normally restrict homeologous recombination. These mutators thus afford the opportunity for horizontal exchange of DNA between disparate strains. While much is known regarding the mutS phenotype, the evolutionary structure of the mutS(+) gene in Escherichia coli remains unclear. The physical proximity of mutS to an adjacent polymorphic region of the chromosome suggests that this gene itself may be subject to horizontal transfer and recombination events. To test this notion, a phylogenetic approach was employed that compared gene phylogeny to strain phylogeny, making it possible to identify E. coli strains in which mutS alleles have recombined. Comparison of mutS phylogeny against predicted E. coli "whole-chromosome" phylogenies (derived from multilocus enzyme electrophoresis and mdh sequences) revealed striking levels of phylogenetic discordance among mutS alleles and their respective strains. We interpret these incongruences as signatures of horizontal exchange among mutS alleles. Examination of additional sites surrounding mutS also revealed incongruous distributions compared to E. coli strain phylogeny. This suggests that other regional sequences are equally subject to horizontal transfer, supporting the hypothesis that the 61.5-min mutS-rpoS region is a recombinational hot spot within the E. coli chromosome. Furthermore, these data are consistent with a mechanism for stabilizing adaptive changes promoted by mutS mutators through rescue of defective mutS alleles with wild-type sequences.  相似文献   
4.
The deoxyribonucleic acid (DNA) of competent wild-type Haemophilus influenzae and rec1 mutant cells contains single-strand regions, as judged by alkaline sucrose sedimentation, benzoylated naphthoylated diethylaminoethyl-cellulose fractionation, and digestion with an enzyme specific for single-strand regions in DNA. In contrast, the DNA of competent rec2 cells does not contain single-strand regions. Since transforming DNA does not associate with recipient DNA in the rec2 mutant as it does in wild type and rec1, it is concluded that the single-strand regions in the DNA of the competent cells are important for an early step in recombination between cell DNA and transforming DNA.  相似文献   
5.
6.
Molecular Genetics and Genomics - The limited ability of ultraviolet (UV)-irradiated E. coli cells to W-reactivate UV-irradiated, single-stranded DNA phages fd and M13 was investigated. The...  相似文献   
7.
Sequence analysis of ultraviolet-induced mutations in M13lacZ hybrid phage DNA   总被引:28,自引:0,他引:28  
We have studied the specificity of ultraviolet (u.v.) mutagenesis in single-stranded DNA phage by analyzing u.v.-induced forward mutations in the lac insert of M13mp2 hybrid phage. Sequence analysis of 114 lac mutants derived from u.v.-irradiated phage grown in u.v.-irradiated cells showed that ultraviolet induces mainly single-nucleotide substitutions and deletions in progeny phage DNA. A total of 74% of the single-base substitution mutations occurred at sites of adjacent pyrimidines in the single-stranded DNA, with both T----C and C----T transitions predominating in the u.v. spectrum. Single-nucleotide deletion mutations occurred preferentially in tracts of repeated pyrimidine nucleotides. Tandem, double-base substitutions did not represent a major class of u.v.-induced mutations, but nearly 10% of mutant clones contained multiple, non-tandem nucleotide changes.  相似文献   
8.
9.
10.
Single-stranded phage DNAs containing thymine glycols were prepared by oxidation with osmium tetroxide (OsO4) and were used as templates for DNA synthesis by E. coli DNA polymerase I. The induction of thymine glycol lesions in DNA, as measured by immunoassay, quantitatively accounted for an inhibition of in vitro DNA synthesis on modified templates. Analysis of termination sites for synthesis by DNA polymerase I (Klenow fragment) showed that DNA synthesis terminated at most template thymine sites in OsO4-treated DNA, indicating that incorporation occurred opposite putative thymine glycols in DNA. Nucleotides 5' and 3' to putative thymine glycol sites affect the reaction, however, since termination was not observed at thymines in the sequence 5'-CTPur-3'. Conversion of thymine glycols to urea residues in DNA by alkali treatment caused termination of DNA synthesis one nucleotide 3' to template thymine sites, including thymines in the 5'-CTPur-3' sequence, showing that the effect of surrounding sequence is on the elongation reaction by DNA polymerase rather than differential damage induction by OsO4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号