全文获取类型
收费全文 | 58篇 |
免费 | 8篇 |
专业分类
66篇 |
出版年
2021年 | 1篇 |
2019年 | 1篇 |
2017年 | 1篇 |
2016年 | 4篇 |
2015年 | 6篇 |
2014年 | 4篇 |
2011年 | 2篇 |
2010年 | 4篇 |
2009年 | 4篇 |
2008年 | 2篇 |
2007年 | 4篇 |
2006年 | 1篇 |
2005年 | 3篇 |
2004年 | 3篇 |
2003年 | 2篇 |
2001年 | 1篇 |
2000年 | 3篇 |
1998年 | 5篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1981年 | 2篇 |
1979年 | 1篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
2.
3.
Michael CW Chan Renee WY Chan Wendy CL Yu Carol CC Ho WH Chui CK Lo Kit M Yuen Yi Guan John M Nicholls JS Malik Peiris 《Respiratory research》2009,10(1):102
Background
Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.Aim
To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.Methods
We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.Results
We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.Conclusion
The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease. 相似文献4.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle. 相似文献
5.
The contractile basis of amoeboid movement: V. The control of gelation, solation, and contraction in extracts from dictyostelium discoideum 总被引:7,自引:22,他引:7 下载免费PDF全文
Motile extracts have been prepared from Dictyostelium discoideum by homogenization and differential centrifugation at 4 degrees C in a stabilization solution (60). These extracts gelled on warming to 25 degrees Celsius and contracted in response to micromolar Ca++ or a pH in excess of 7.0. Optimal gelation occurred in a solution containing 2.5 mM ethylene glycol-bis (β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA), 2.5 mM piperazine-N-N'-bis [2-ethane sulfonic acid] (PIPES), 1 mM MgC1(2), 1 mM ATP, and 20 mM KCI at ph 7.0 (relaxation solution), while micromolar levels of Ca++ inhibited gelation. Conditions that solated the gel elicited contraction of extracts containing myosin. This was true regardless of whether chemical (micromolar Ca++, pH >7.0, cytochalasin B, elevated concentrations of KCI, MgC1(2), and sucrose) or physical (pressure, mechanical stress, and cold) means were used to induce solation. Myosin was definitely required for contraction. During Ca++-or pH-elicited contraction: (a) actin, myosin, and a 95,000-dalton polypeptide were concentrated in the contracted extract; (b) the gelation activity was recovered in the material sqeezed out the contracting extract;(c) electron microscopy demonstrated that the number of free, recognizable F-actin filaments increased; (d) the actomyosin MgATPase activity was stimulated by 4- to 10-fold. In the absense of myosin the Dictyostelium extract did not contract, while gelation proceeded normally. During solation of the gel in the absense of myosin: (a) electron microscopy demonstrated that the number of free, recognizable F- actin filaments increased; (b) solation-dependent contraction of the extract and the Ca++-stimulated MgATPase activity were reconstituted by adding puried Dictyostelium myosin. Actin purified from the Dictyostelium extract did not gel (at 2 mg/ml), while low concentrations of actin (0.7-2 mg/ml) that contained several contaminating components underwent rapid Ca++ regulated gelation. These results indicated : (a) gelation in Dictyostelium extracts involves a specific Ca++-sensitive interaction between actin and several other components; (b) myosin is an absolute requirement for contraction of the extract; (c) actin-myosin interactions capable of producing force for movement are prevented in the gel, while solation of the gel by either physical or chemical means results in the release of F-actin capable of interaction with myosin and subsequent contraction. The effectiveness of physical agents in producting contraction suggests that the regulation of contraction by the gel is structural in nature. 相似文献
6.
7.
The results described in the accompanying article support the model in
which glucosylphosphoryldolichol (Glc-P-Dol) is synthesized on the
cytoplasmic face of the ER, and functions as a glucosyl donor for three
Glc-P-Dol:Glc0-2Man9-GlcNAc2-P-P-Dol glucosyltransferases (GlcTases) in the
lumenal compartment. In this study, the enzymatic synthesis and structural
characterization by NMR and electrospray-ionization tandem mass
spectrometry of a series of water-soluble beta-Glc-P-Dol analogs containing
2-4 isoprene units with either the cis - or trans - stereoconfiguration in
the beta-position are described. The water- soluble analogs were (1) used
to examine the stereospecificity of the Glc-P-Dol:Glc0-2Man9GlcNAc2-P-P-Dol
glucosyltransferases (GlcTases) and (2) tested as potential substrates for
a membrane protein(s) mediating the transbilayer movement of Glc-P-Dol in
sealed ER vesicles from rat liver and pig brain. The Glc-P-Dol-mediated
GlcTases in pig brain microsomes utilized [3H]Glc-labeled Glc-P-Dol10,
Glc-P-(omega, c )Dol15, Glc-P(omega, t,t )Dol20, and Glc-P-(omega, t,c
)Dol20as glucosyl donors with [3H]Glc3Man9GlcNAc2-P-P-Dol the major product
labeled in vitro. A preference was exhibited for C15-20 substrates
containing an internal cis -isoprene unit in the beta-position. In
addition, the water-soluble analog, Glc-P-Dol10, was shown to enter the
lumenal compartment of sealed microsomal vesicles from rat liver and pig
brain via a protein-mediated transport system enriched in the ER. The
properties of the ER transport system have been characterized. Glc-
P-Dol10was not transported into or adsorbed by synthetic PC-liposomes or
bovine erythrocytes. The results of these studies indicate that (1) the
internal cis -isoprene units are important for the utilization of Glc-P-Dol
as a glucosyl donor and (2) the transport of the water- soluble analog may
provide an experimental approach to assay the hypothetical "flippase"
proposed to mediate the transbilayer movement of Glc-P-Dol from the
cytoplasmic face of the ER to the lumenal monolayer.
相似文献
8.
Damen CW Rosing H Tibben MM van Maanen MJ Lagas JS Schinkel AH Schellens JH Beijnen JH 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2008,868(1-2):102-109
A sensitive, specific and fast high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) assay for the determination of vinorelbine in mouse and human plasma is presented. A 200 microL aliquot was extracted with solid-phase extraction (SPE) using Bond-Elut C(2) cartridges. Dried extracts were reconstituted in 100 microL 1 mM ammonium acetate pH 10.5-acetonitrile-methanol (21:9:70, v/v/v) containing the internal standard vintriptol (100 ng/mL) and 10 microL volumes were injected onto the HPLC system. Separation was achieved on a 50 mm x 2.0 mm i.d. Gemini C(18) column using isocratic elution with 1 mM ammonium acetate pH 10.5-acetonitrile-methanol (21:9:70, v/v/v) at a flow rate of 0.4 mL/min. HPLC run time was only 5 min. Detection was performed using positive ion electrospray ionization followed by tandem mass spectrometry (ESI-MS/MS). The assay quantifies vinorelbine from 0.1 to 100 ng/mL using human plasma sample volumes of 200 microL. With this method vinorelbine can be measured in mouse plasma samples when these samples are diluted eight times in control human plasma. Calibration samples prepared in control human plasma can be used for the quantification of the drug. The lower limit of quantification in mouse plasma is 0.8 ng/mL. This assay is used to support preclinical and clinical pharmacologic studies with vinorelbine. 相似文献
9.
Background
a decline in immune and endocrine function occurs with aging. The main purpose of this study was to investigate the impact of long-term endurance training on the immune and endocrine system of elderly men. The possible interaction between these systems was also analysed. 相似文献10.
Microengineered systems with iPSC-derived cardiac and hepatic cells to evaluate drug adverse effects
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects. 相似文献