排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
Aravinthan DT Samuel Venkatesh N Murthy Michael O Hengartner 《BMC developmental biology》2001,1(1):8-6
Background
Of the animals typically used to study fertilization-induced calcium dynamics, none is as accessible to genetics and molecular biology as the model organism Caenorhabditis elegans. Motivated by the experimental possibilities inherent in using such a well-established model organism, we have characterized fertilization-induced calcium dynamics in C. elegans.Results
Owing to the transparency of the nematode, we have been able to study the calcium signal in C. elegans fertilization in vivo by monitoring the fluorescence of calcium indicator dyes that we introduce into the cytosol of oocytes. In C. elegans, fertilization induces a single calcium transient that is initiated soon after oocyte entry into the spermatheca, the compartment that contains sperm. Therefore, it is likely that the calcium transient is initiated by contact with sperm. This calcium elevation spreads throughout the oocyte, and decays monotonically after which the cytosolic calcium concentration returns to that preceding fertilization. Only this single calcium transient is observed.Conclusion
Development of a technique to study fertilization induced calcium transients opens several experimental possibilities, e.g., identification of the signaling events intervening sperm binding and calcium elevation, identifying the possible roles of the calcium elevation such as the completion of meiosis, the formation of the eggshell, and the establishing of the embryo's axis of symmetry. 相似文献2.
Direct sequencing of the mitochondrial displacement loop (D-loop) of shrews
(genus Sorex) for the region between the tRNA(Pro) and the conserved
sequence block-F revealed variable numbers of 79-bp tandem repeats. These
repeats were found in all 19 individuals sequenced, representing three
subspecies and one closely related species of the masked shrew group (Sorex
cinereus cinereus, S. c. miscix, S. c. acadicus, and S. haydeni) and an
outgroup, the pygmy shrew (S. hoyi). Each specimen also possessed an
adjacent 76-bp imperfect copy of the tandem repeats. One individual was
heteroplasmic for length variants consisting of five and seven copies of
the 79-bp tandem repeat. The sequence of the repeats is conducive to the
formation of secondary structure. A termination-associated sequence is
present in each of the repeats and in a unique sequence region 5' to the
tandem array as well. Mean genetic distance between the masked shrew taxa
and the pygmy shrew was calculated separately for the unique sequence
region, one of the tandem repeats, the imperfect repeat, and these three
regions combined. The unique sequence region evolved more rapidly than the
tandem repeats or the imperfect repeat. The small genetic distance between
pairs of tandem repeats within an individual is consistent with a model of
concerted evolution. Repeats are apparently duplicated and lost at a high
rate, which tends to homogenize the tandem array. The rate of D- loop
sequence divergence between the masked and pygmy shrews is estimated to be
15%-20%/Myr, the highest rate observed in D-loops of mammals. Rapid
sequence evolution in shrews may be due either to their high metabolic rate
and short generation time or to the presence of variable numbers of tandem
repeats.
相似文献
3.
The distribution of amiloride-sensitive sodium channels (ASSCs) in taste
buds isolated from the oral cavity of hamsters was assessed by patch clamp
recording. In contrast to the case for rats, taste cells from the
fungiform, foliate and vallate papillae and from the soft palate all
contain functional ASSCs. The differential distribution of ASSCs between
the hamster and the rat may be important for understanding the physiology
underlying the differing behavioral responses of these species to sodium
salts.
相似文献
4.
Woods WS Boettcher JM Zhou DH Kloepper KD Hartman KL Ladror DT Qi Z Rienstra CM George JM 《The Journal of biological chemistry》2007,282(47):34555-34567
Alpha-synuclein (AS) is an intrinsically unstructured protein in aqueous solution but is capable of forming beta-sheet-rich fibrils that accumulate as intracytoplasmic inclusions in Parkinson disease and certain other neurological disorders. However, AS binding to phospholipid membranes leads to a distinct change in protein conformation, stabilizing an extended amphipathic alpha-helical domain reminiscent of the exchangeable apolipoproteins. To better understand the significance of this conformational change, we devised a novel bacteriophage display screen to identify protein binding partners of helical AS and have identified 20 proteins with roles in diverse cellular processes related to membrane trafficking, ion channel modulation, redox metabolism, and gene regulation. To verify that the screen identifies proteins with specificity for helical AS, we further characterized one of these candidates, endosulfine alpha (ENSA), a small cAMP-regulated phosphoprotein implicated in the regulation of insulin secretion but also expressed abundantly in the brain. We used solution NMR to probe the interaction between ENSA and AS on the surface of SDS micelles. Chemical shift perturbation mapping experiments indicate that ENSA interacts specifically with residues in the N-terminal helical domain of AS in the presence of SDS but not in aqueous buffer lacking SDS. The ENSA-related protein ARPP-19 (cAMP-regulated phosphoprotein 19) also displays specific interactions with helical AS. These results confirm that the helical N terminus of AS can mediate specific interactions with other proteins and suggest that membrane binding may regulate the physiological activity of AS in vivo. 相似文献
5.
John M. Boettcher Kevin L. Hartman Daniel T. Ladror Zhi Qi Wendy S. Woods Julia M. George Chad M. Rienstra 《Biomolecular NMR assignments》2007,1(2):167-169
13C, 15N, and 1H chemical shift assignments are presented for the cAMP-regulated phosphoprotein endosulfine-alpha in its free and micelle-bound
states. Secondary chemical shift analysis demonstrates formation of four helices in the micelle-bound state, which are not
present in the absence of detergent. 相似文献
6.
7.
8.
High voltage-activated (HVA) Cav channels form complexes with KCa1.1 channels, allowing reliable activation of KCa1.1 current through a nanodomain interaction. We recently found that low voltage-activated Cav3 calcium channels also create KCa1.1-Cav3 complexes. While coimmunoprecipitation studies again supported a nanodomain interaction, the sensitivity to calcium chelating agents was instead consistent with a microdomain interaction. A computational model of the KCa1.1-Cav3 complex suggested that multiple Cav3 channels were necessary to activate KCa1.1 channels, potentially causing the KCa1.1-Cav3 complex to be more susceptible to calcium chelators. Here, we expanded the model and compared it to a KCa1.1-Cav2.2 model to examine the role of Cav channel conductance and kinetics on KCa1.1 activation. As found for direct recordings, the voltage-dependent and kinetic properties of Cav3 channels were reflected in the activation of KCa1.1 current, including transient activation from lower voltages than other KCa1.1-Cav complexes. Substantial activation of KCa1.1 channels required the concerted activity of several Cav3.2 channels. Combined with the effect of EGTA, these results suggest that the Ca2+ domains of several KCa1.1-Cav3 complexes need to cooperate to generate sufficient [Ca2+]i, despite the physical association between KCa1.1 and Cav3 channels. By comparison, Cav2.2 channels were twice as effective at activating KCa1.1 channels and a single KCa1.1-Cav2.2 complex would be self-sufficient. However, even though Cav3 channels generate small, transient currents, the regulation of KCa1.1 activity by Cav3 channels is possible if multiple complexes cooperate through microdomain interactions. 相似文献
9.
Uri S. Ladror Gary T. Wang William L. Klein Thomas F. Holzman Grant A. Krafft 《Journal of Protein Chemistry》1994,13(4):357-366
Fluorogenic peptide substrates designed to encompass the reported-secretory and amyloidogenic cleavage sites of the amyloid- precursor protein (PP) were used to analyze proteinase activities in brain extracts from control patients and those with Alzheimer's disease (AD). Activity against the secretory substrate atpH 7.5 in control and AD brains produced a major endopeptidase cleavage at the Lys687-Leu688 bond (PP770 numbering), consistent with thePP secretase cleavage. Activity in control brains against the amyloidogenic substrate atpH 7.5 produced one cleavage at the Ala673-Glu674 bond, two residues C-terminal to the amyloidogenic Met-Asp site. However, in three of four AD brains, the major cleavage was at the Asp-Ala bond, one residue from the amyloidogenic site. Both endopeptidase and carboxypeptidase activities in AD brains were lower than in control brains. Proteinase activities against the secretory substrate had a major optimum atpH 3.0–4.0 and another atpH 6.0–7.5. Proteinase activities against the amyloidogenic substrate had a major optimum at or belowpH 3.0 and another atpH 6.0. Using both substrates, activities at lowpH were higher in AD brains than in controls, while atpH above 6.5, activities in control brains were higher than in AD. These results indicate that the levels of proteolytic enzymes in AD brains are altered relative to controls.Abbreviations A
Amyloid-
- ACN
acetonitrile
- AD
Alzheimer's disease
- PP
amyloid- precursor protein
- DABCYL
4-(4-dimethylaminophenylazo)-benzoic acid
- EDANS
5-{(2-aminoethyl)amino}napthalene-1-sulfonic acid
- MES
morpholinoethane sulfonic acid
- MOPS
morpholino-propane sulfonic acid
- RP-HPLC
reverse-phase high-performance liquid chromatography
- SDS-PAGE
sodium do-decyl sulfate-polyacrylamide gel electrophoresis
- TFA
tri-fluoroacetic acid
- Tris
tris(hydroxyethyl)aminomethane 相似文献
10.