首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  2015年   1篇
  2011年   1篇
  2009年   1篇
  1997年   1篇
  1970年   1篇
  1959年   1篇
  1957年   1篇
  1956年   1篇
  1955年   1篇
  1954年   2篇
  1953年   2篇
  1952年   3篇
  1951年   3篇
  1949年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
2.
Biophysical procedures have been used to determine the size and structure of the biologically active agent responsible for the transmission, through milk, of mouse mammary adenocarcinoma. Filtration of milk from RIII high-breast-cancer mice through gradocol membranes with decreasing pore sizes indicated that a minimum of activity passed through intermediate pore sizes (100 to 160 mmicro). Filtrates through smaller pores were significantly active. Milk treated with small doses of deuteron irradiation produced more tumors than the control, unirradiated milk; larger doses indicated a particle size much less than 100 mmicro. Free diffusion experiments indicated that the activity was associated with particles of two different sizes. Altogether the data denoted the presence of a large agent about 100 mmicro in diameter and a small agent 20 to 30 mmicro in diameter or possibly smaller. Furthermore, the presence in the milk of an inhibitor 40 to 60 mmicro is indicated by the results of all three approaches. The complex nature of the milk agent disclosed by the physical measurements agrees with the picture of one of the structures revealed by electron microscopy as well as with seemingly conflicting measurements reported in the literature. The large agent defined by these indirect methods corresponds to the whole particle seen in the electron microscope and the small agent corresponds to its internal core or nucleoid. It is suggested that the nucleoid is essentially a nucleic acid which may, in the absence of the "inhibitor," retain its activity after being stripped of its outer membrane or sac.  相似文献   
3.
4.
5.
6.
Faroe house mice are a ‘classic’ system of rapid and dramatic morphological divergence highlighted by J. S. Huxley during the development of the Modern Synthesis. In the present study, we characterize these charismatic mice using modern molecular techniques, examining specimens from all Faroe islands occupied by mice. The aims were to classify the mice within the modern house mouse taxonomy (i.e. as either Mus musculus domesticus or Mus musculus musculus) using four molecular markers and a morphological feature, and to examine the genetic diversity and possible routes of colonization using mitochondrial (mt) control region DNA sequences and microsatellite data (15 loci). Mice on the most remote islands were characterized as M. m. domesticus and exhibited exceptionally low genetic diversity, whereas those on better connected islands were more genetically diverse and had both M. m. musculus and M. m. domesticus genetic elements, including one population which was morphologically M. m. musculus‐like. The mtDNA data indicate that the majority of the mice had their origins in south‐western Norway (or possibly southern Denmark/northern Germany), and probably arrived with the Vikings, earlier than suggested by Huxley. The M. m. musculus genetic component appears to derive from recent mouse immigration from Denmark. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 471–482.  相似文献   
7.
8.
Random amplified polymorphic DNA (RAPD) analysis was adapted for genomic identification of cell cultures and evaluation of DNA stability in cells of different origin at different culture passages. DNA stability was observed in cultures after no more than 5 passages. Adipose-derived stromal cells demonstrated increased DNA instability. RAPD fragments from different cell lines after different number of passages were cloned and sequenced. The chromosomal localization of these fragments was identified and single-nucleotide variations in RAPD fragments isolated from cell lines after 8–12 passages were revealed. Some of them had permanent localization, while most variations demonstrated random distribution and can be considered as de novo mutations.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号