全文获取类型
收费全文 | 165篇 |
免费 | 6篇 |
专业分类
171篇 |
出版年
2021年 | 2篇 |
2020年 | 3篇 |
2019年 | 2篇 |
2018年 | 2篇 |
2017年 | 10篇 |
2016年 | 2篇 |
2015年 | 2篇 |
2014年 | 3篇 |
2013年 | 6篇 |
2012年 | 8篇 |
2011年 | 18篇 |
2010年 | 1篇 |
2009年 | 3篇 |
2008年 | 15篇 |
2007年 | 7篇 |
2006年 | 8篇 |
2005年 | 9篇 |
2004年 | 9篇 |
2003年 | 8篇 |
2002年 | 8篇 |
2001年 | 4篇 |
2000年 | 9篇 |
1999年 | 4篇 |
1997年 | 1篇 |
1995年 | 1篇 |
1992年 | 6篇 |
1991年 | 1篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1988年 | 3篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1982年 | 3篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1970年 | 1篇 |
排序方式: 共有171条查询结果,搜索用时 0 毫秒
1.
Cloning of rabbit uricase cDNA reveals a conserved carboxy-terminal tripeptide in three species 总被引:2,自引:0,他引:2
cDNA clones encoding uricase have been isolated from a rabbit liver cDNA library. The nucleotide sequences of the cDNAs have been determined and those of the rat uricase cDNA have been revised. In all three uricases, the carboxy-terminal tripeptides are Ser-Arg/Lys-Leu sequences, which have recently been suggested as an essential element of peroxisomal targetting signals for many but not all peroxisomal proteins. 相似文献
2.
Sakane I Hongo K Motojima F Murayama S Mizobata T Kawata Y 《Journal of molecular biology》2007,367(4):1171-1185
In order to understand how inter-subunit association stabilizes oligomeric proteins, a single polypeptide chain variant of heptameric co-chaperonin GroES (tandem GroES) was constructed from Escherichia coli heptameric GroES by linking consecutively the C-terminal of one subunit to the N-terminal of the adjacent subunit with a small linker peptide. The tandem GroES (ESC7) showed properties similar to wild-type GroES in structural aspects and co-chaperonin activity. In unfolding and refolding equilibrium experiments using guanidine hydrochloride (Gdn-HCl) as a denaturant at a low protein concentration (50 microg ml(-1)), ESC7 showed a two-state transition with a greater resistance toward Gdn-HCl denaturation (Cm=1.95 M) compared to wild-type GroES (Cm=1.1 M). ESC7 was found to be about 10 kcal mol(-1) more stable than the wild-type GroES heptamer at 50 microg ml(-1). Kinetic unfolding and refolding experiments of ESC7 revealed that the increased stability was mainly attributed to a slower unfolding rate. Also a transient intermediate was detected in the refolding reaction. Interestingly, at the physiological GroES concentration (>1 mg ml(-1)), the free energy of unfolding for GroES heptamer exceeded that for ESC7. These results showed that at low protein concentrations (<1 mg ml(-1)), the covalent linking of subunits contributes to the stability but also complicates the refolding kinetics. At physiological concentrations of GroES, however, the oligomeric state is energetically preferred and the advantages of covalent linkage are lost. This finding highlights a possible advantage in transitioning from multi-domain proteins to oligomeric proteins with small subunits in order to improve structural and kinetic stabilities. 相似文献
3.
Urabe H Aoyagi N Ogawara H Motojima K 《Bioscience, biotechnology, and biochemistry》2008,72(3):778-785
We identified and characterized the gene encoding a new eukaryotic-type protein kinase from Streptomyces coelicolor A3(2) M145. PkaD, consisting of 598 amino acid residues, contained the catalytic domain of eukaryotic protein kinases in the N-terminal region. A hydrophobicity plot indicated the presence of a putative transmembrane spanning sequence downstream of the catalytic domain, suggesting that PkaD is a transmembrane protein kinase. The recombinant PkaD was found to be phosphorylated at the threonine and tyrosine residues. In S. coelicolor A3(2), pkaD was transcribed as a monocistronic mRNA, and it was expressed constitutively throughout the life cycle. Disruption of chromosomal pkaD resulted in a significant loss of actinorhodin production. This result implies the involvement of pkaD in the regulation of secondary metabolism. 相似文献
4.
5.
6.
Isolation and molecular characterization of a nelfinavir (NFV)-resistant human immunodeficiency virus type 1 that exhibits NFV-dependent enhancement of replication 总被引:1,自引:0,他引:1 下载免费PDF全文
Matsuoka-Aizawa S Sato H Hachiya A Tsuchiya K Takebe Y Gatanaga H Kimura S Oka S 《Journal of virology》2003,77(1):318-327
During the use of a phenotypic anti-human immunodeficiency virus type 1 (HIV-1) drug resistance assay in a large set of clinical virus isolates, we found a unique variant (CL-4) that exhibited a high level of nelfinavir (NFV) resistance and rather enhanced replication under subinhibitory concentrations of NFV (0.001 to 0.1 micro M). Comparison of gag-pol sequences of the CL-4 variant and its predecessor virus isolates showed a stepwise accumulation of a total of 19 amino acid substitutions in protease (PR) and Gag p17 during 32-month NFV-containing antiretroviral therapy, while other Gag regions including the cleavage sites of the p55 precursor remained highly conserved. To understand the relationship between the genetic and phenotypic changes in CL-4, we constructed chimeric viruses using pNL4-3, replacing the PR, p24PR, or p17PR gene segment of CL-4 or its predecessor. A series of tissue culture infections with the chimeras in the absence or presence of increasing concentrations of NFV demonstrated that only the p17PR segment of CL-4 could confer the NFV-dependent replication enhancement phenotype on NL4-3. Our data suggest a novel adaptation mechanism of HIV-1 to NFV, in which coevolution of Gag and PR genes generates a variant that replicates more efficiently in the cellular environment in the presence of NFV than without the drug. 相似文献
7.
8.
Nojima T Murayama S Yoshida M Motojima F 《The Journal of biological chemistry》2008,283(26):18385-18392
A double-heptamer ring chaperonin GroEL binds denatured substrate protein, ATP, and GroES to the same heptamer ring and encapsulates substrate into the central cavity underneath GroES where productive folding occurs. GroES is a disk-shaped heptamer, and each subunit has a GroEL-binding loop. The residues of the GroEL subunit responsible for GroES binding largely overlap those involved in substrate binding, and the mechanism by which GroES can replace the substrate when GroES binds to GroEL/substrate complex remains to be clarified. To address this question, we generated single polypeptide GroES by fusing seven subunits with various combinations of active and GroEL binding-defective subunits. Functional tests of the fused GroES variants indicated that four active GroES subunits were required for efficient formation of the stable GroEL/GroES complex and five subunits were required for the productive GroEL/substrate/GroES complex. An increase in the number of defective GroES subunits resulted in a slowing of encapsulation and folding. These results indicate the presence of an intermediate GroEL/substrate/GroES complex in which the substrate and GroES bind to GroEL by sharing seven common binding sites. 相似文献
9.
Arai M Ito K Inobe T Nakao M Maki K Kamagata K Kihara H Amemiya Y Kuwajima K 《Journal of molecular biology》2002,321(1):121-132
To monitor the fast compaction process during protein folding, we have used a stopped-flow small-angle X-ray scattering technique combined with a two-dimensional charge-coupled device-based X-ray detector that makes it possible to improve the signal-to-noise ratio of data dramatically, and measured the kinetic refolding reaction of alpha-lactalbumin. The results clearly show that the radius of gyration and the overall shape of the kinetic folding intermediate of alpha-lactalbumin are the same as those of the molten globule state observed at equilibrium. Thus, the identity between the kinetic folding intermediate and the equilibrium molten globule state is firmly established. The present results also suggest that the folding intermediate is more hydrated than the native state and that the hydrated water molecules are dehydrated when specific side-chain packing is formed during the change from the molten globule to the native state. 相似文献
10.