首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   25篇
  445篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2020年   6篇
  2019年   8篇
  2018年   8篇
  2017年   9篇
  2016年   4篇
  2015年   24篇
  2014年   22篇
  2013年   22篇
  2012年   30篇
  2011年   28篇
  2010年   17篇
  2009年   14篇
  2008年   17篇
  2007年   12篇
  2006年   19篇
  2005年   13篇
  2004年   13篇
  2003年   16篇
  2002年   12篇
  2001年   10篇
  2000年   9篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1996年   7篇
  1995年   7篇
  1994年   5篇
  1993年   8篇
  1992年   13篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1988年   7篇
  1987年   6篇
  1986年   4篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1977年   3篇
  1974年   1篇
  1952年   1篇
  1935年   1篇
  1934年   1篇
排序方式: 共有445条查询结果,搜索用时 0 毫秒
1.
If growing cells in plants are considered to be composed of increments (ICs) an extended version of the law of mass action can be formulated. It evidences that growth of plants runs optimal if the reaction–entropy term (entropy times the absolute temperature) matches the contact energy of ICs. Since these energies are small, thermal molecular movements facilitate via relaxation the removal of structure disturbances. Stem diameter distributions exhibit extra fluctuations likely to be caused by permanent constraints. Since the signal–response system enables in principle perfect optimization only within finite-sized cell ensembles, plants comprising relatively large cell numbers form a network of size-limited subsystems. The maximal number of these constituents depends both on genetic and environmental factors. Accounting for logistical structure–dynamics interrelations, equations can be formulated to describe the bimodal growth curves of very different plants. The reproduction of the S-bended growth curves verifies that the relaxation modes with a broad structure-controlled distribution freeze successively until finally growth is fully blocked thus bringing about “continuous solidification”.  相似文献   
2.
The celiac disease (CD) is an inflammatory condition characterized by injury to the lining of the small-intestine on exposure to the gluten of wheat, barley and rye. The involvement of gluten in the CD syndrome has been studied in detail in bread wheat, where a set of “toxic” and “immunogenic” peptides has been defined. For wheat diploid species, information on CD epitopes is poor. In the present paper, we have adopted a genomic approach in order to understand the potential CD danger represented by storage proteins in diploid wheat and sequenced a sufficiently large number of cDNA clones related to storage protein genes of Triticum monococcum. Four bona fide toxic peptides and 13 immunogenic peptides were found. All the classes of storage proteins were shown to contain harmful sequences. The major conclusion is that einkorn has the full potential to induce the CD syndrome, as already evident for polyploid wheats. In addition, a complete overview of the storage protein gene arsenal in T. monococcum is provided, including a full-length HMW x-type sequence and two partial HMW y-type sequences. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
3.
Summary Pseudocyphellaria dissimilis, a foliose, cyanobacterial lichen, is shown not to fit into the normal ecological concept of lichens. This species is both extremely shade-tolerant and also more intolerant to drying than aquatic lichens previously thought to be the most desiccation-sensitive of lichens. Samples of P. dissimilis from a humid rain-forest site in New Zealand were transported in a moist state to Germany. Photosynthesis response curves were generated. The effect of desiccation was measured by comparing CO2 exchange before and after a standard 20-h drying routine. Lichen thalli could be equilibrated at 15° C to relative humidities (RH) from 5% to almost 100%. Photosynthesis was saturated at a photosynthetically active radiation (PAR) level of 20 mol m-2 s-1 (350 bar CO2) and PAR compensation was a very low 1 mol m-2 s-1. Photosynthesis did not saturate until 1500 bar CO2. Net photosynthesis was relatively unaffected by temperature between 10° C and 30° C with upper compensation at over 40° C. Temporary depression of photosynthesis occurred after a drying period of 20 h with equilibration at 45–65% relative humidity (RH). Sustained damage occurred at 15–25% RH and many samples died after equilibration at 5–16% RH. Microclimate studies of the lichen habitat below the evergreen, broadleaf forest canopy revealed consistently low PAR (normally below 10–20 mol m-2 s-1) and high humidities (over 80% RH even during the day time). The species shows many features of an extremely deep shade-adapted plant including low PAR saturation and compensation, low photosynthetic and respiratory rates and low dry weight per unit area.  相似文献   
4.
Glycophorin A was phosphorylated using protein kinases and the new protein was investigated using31P NMR spectroscopy. Most of these ~30 moles of phosphate were found to be attached to Ser and Thr. Some of these phosphate residues appear to be affected by the carbohydrate residues present. The phosphorylated protein appears to be in a severe state of aggregation, with the degree of aggregationpH-dependent.  相似文献   
5.
Low-affinity (K m=67.6±3.2 mM) and high-affinity (K m=1.9±1.2 mM) D-xylose transport occur in Candida utilis grown, respectively, on D-glucose or D-xylose. Starvation of glucose-grown cells decreases the K m value (10.5±2.6 mm). The high-affinity system appearing during starvation required protein synthesis and it was inactivated when cells were exposed to glucose, by a process independent of protein synthesis. High-affinity transport was accompanied by transient alkalinization of yeast suspensions, indicating that it is a proton symport, whereas low-affinity transport was not. Both systems, however, were inhibited by metabolic inhibitors and by replacing H2O in the transport assay with D2O, indicating that both may be proton symports. Glucose and acetic acid also inhibited both high-and low-affinity xylose transport.S.G. Kilian, B.A. Prior and J.C. du Preez are with the Department of Microbiology and Biochemistry, University of the Orange Free State, P.O. Box 339, Bloemfontein 9300, Republic of South Africa  相似文献   
6.
The 13C resonances of Nα,N-[13C]dimethylserine of partially 13C reductively methylated glycophorin AM were monitored as a function of pH at 45°C. For comparison, limited data are also presented for the pH dependence of the 13C resonances of Nα,N- [13C]dimethylserine of fully 13C reductively methylated deglycosylated glycophorin AM. The ‘major’ component of Nα,N- [13C]dimethylserine of glycophorin AM did not titrate, whereas the ‘minor’ component titrated with a pKa of 7.80 (Hill coefficient of 0.95). Similar results are also indicated for the Nα,N- [13C]dimethylserine resonances of 13C reductively methylated deglycosylated glycophorin AM.  相似文献   
7.
8.
9.
Soil microbial communities are responsible for important physiological and metabolic processes. In the last decade soil microorganisms have been frequently analysed by cultivation-independent techniques because only a minority of the natural microbial communities are accessible by cultivation. Cultivation-independent community analyses have revolutionized our understanding of soil microbial diversity and population dynamics. Nevertheless, many methods are still laborious and time-consuming, and high-throughput methods have to be applied in order to understand population shifts at a finer level and to be better able to link microbial diversity with ecosystems functioning. Microbial diagnostic microarrays (MDMs) represent a powerful tool for the parallel, high-throughput identification of many microorganisms. Three categories of MDMs have been defined based on the nature of the probe and target molecules used: phylogenetic oligonucleotide microarrays with short oligonucleotides against a phylogenetic marker gene; functional gene arrays containing probes targeting genes encoding specific functions; and community genome arrays employing whole genomes as probes. In this review, important methodological developments relevant to the application of the different types of diagnostic microarrays in soil ecology will be addressed and new approaches, needs and future directions will be identified, which might lead to a better insight into the functional activities of soil microbial communities.  相似文献   
10.
For simultaneous identification of members of the betaproteobacterial order "Rhodocyclales" in environmental samples, a 16S rRNA gene-targeted oligonucleotide microarray (RHC-PhyloChip) consisting of 79 probes was developed. Probe design was based on phylogenetic analysis of available 16S rRNA sequences from all cultured and as yet uncultured members of the "Rhodocyclales." The multiple nested probe set was evaluated for microarray hybridization with 16S rRNA gene PCR amplicons from 29 reference organisms. Subsequently, the RHC-PhyloChip was successfully used for cultivation-independent "Rhodocyclales" diversity analysis in activated sludge from an industrial wastewater treatment plant. The implementation of a newly designed "Rhodocyclales"-selective PCR amplification system prior to microarray hybridization greatly enhanced the sensitivity of the RHC-PhyloChip and thus enabled the detection of "Rhodocyclales" populations with relative abundances of less than 1% of all bacteria (as determined by fluorescence in situ hybridization) in the activated sludge. The presence of as yet uncultured Zoogloea-, Ferribacterium/Dechloromonas-, and Sterolibacterium-related bacteria in the industrial activated sludge, as indicated by the RHC-PhyloChip analysis, was confirmed by retrieval of their 16S rRNA gene sequences and subsequent phylogenetic analysis, demonstrating the suitability of the RHC-PhyloChip as a novel monitoring tool for environmental microbiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号