首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   14篇
  123篇
  2022年   4篇
  2021年   4篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   10篇
  2012年   4篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   7篇
  2007年   12篇
  2006年   5篇
  2005年   8篇
  2004年   10篇
  2003年   10篇
  2002年   5篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1990年   1篇
  1986年   1篇
  1978年   2篇
  1973年   1篇
排序方式: 共有123条查询结果,搜索用时 0 毫秒
1.
A number of plasmid-encoded gene systems are thought to stabilize plasmids by killing plasmid-free cells (also termed post-segregational killing or plasmid addiction). Here we analyse the mechanisms of plasmid stabilization by ccd of F, parDE of RP4 and parD of R1, and compare them to hok/sok of R1. To induce synchronous plasmid loss we constructed a novel plasmid replication-arrest system, which possesses the advantage that plasmid replication can be completely arrested by the addition of IPTG, a non-metabolizable inducer. Using isogenic plasmid constructions we have found, for the first time, consistent correlation between the effect on steady-state loss rates and the effect on cell proliferation in the plasmid replication-arrest assay for all three systems. The parDE system had the most pronounced effect both on plasmid stabilization and on plasmid retention after replication arrest. In contrast, ccd and parD both exhibited weaker effects than anticipated from previously published results. Thus, our results indicate that the function and efficiencies of some of the systems should be reconsidered. Our results are consistent with the previously postulated hypothesis that ccd and parDE act by killing plasmid-free segregants, whereas parD seems to act by inhibiting cell division of plasmid-free segregants.  相似文献   
2.
Peri-cellular remodeling of mesenchymal extracellular matrices is considered a prerequisite for cell proliferation, motility and development. Here we demonstrate that membrane-type 3 MMP, MT3-MMP, is expressed in mesenchymal tissues of the skeleton and in peri-skeletal soft connective tissue. Consistent with this localization, MT3-MMP-deficient mice display growth inhibition tied to a decreased viability of mesenchymal cells in skeletal tissues. We document that MT3-MMP works as a major collagenolytic enzyme, enabling cartilage and bone cells to cleave high-density fibrillar collagen and modulate their resident matrix to make it permissive for proliferation and migration. Collectively, these data uncover a novel extracellular matrix remodeling mechanism required for proper function of mesenchymal cells. The physiological significance of MT3-MMP is highlighted in mice double deficient for MT1-MMP and MT3-MMP. Double deficiency transcends the combined effects of the individual single deficiencies and leads to severe embryonic defects in palatogenesis and bone formation incompatible with life. These defects are directly tied to loss of indispensable collagenolytic activities required in collagen-rich mesenchymal tissues for extracellular matrix remodeling and cell proliferation during embryogenesis.  相似文献   
3.
4.
5.
6.
Prokaryotic toxin-antitoxin stress response loci   总被引:11,自引:0,他引:11  
Although toxin-antitoxin gene cassettes were first found in plasmids, recent database mining has shown that these loci are abundant in free-living prokaryotes, including many pathogenic bacteria. For example, Mycobacterium tuberculosis has 38 chromosomal toxin-antitoxin loci, including 3 relBE and 9 mazEF loci. RelE and MazF are toxins that cleave mRNA in response to nutritional stress. RelE cleaves mRNAs that are positioned at the ribosomal A-site, between the second and third nucleotides of the A-site codon. It has been proposed that toxin-antitoxin loci function in bacterial programmed cell death, but evidence now indicates that these loci provide a control mechanism that helps free-living prokaryotes cope with nutritional stress.  相似文献   
7.
8.
9.
Low copy number plasmids in bacteria require segregation for stable inheritance through cell division. This is often achieved by a parABC locus, comprising an ATPase ParA, DNA-binding protein ParB and a parC region, encoding ParB-binding sites. These minimal components space plasmids equally over the nucleoid, yet the underlying mechanism is not understood. Here we investigate a model where ParA-ATP can dynamically associate to the nucleoid and is hydrolyzed by plasmid-associated ParB, thereby creating nucleoid-bound, self-organizing ParA concentration gradients. We show mathematically that differences between competing ParA concentrations on either side of a plasmid can specify regular plasmid positioning. Such positioning can be achieved regardless of the exact mechanism of plasmid movement, including plasmid diffusion with ParA-mediated immobilization or directed plasmid motion induced by ParB/parC-stimulated ParA structure disassembly. However, we find experimentally that parABC from Escherichia coli plasmid pB171 increases plasmid mobility, inconsistent with diffusion/immobilization. Instead our observations favor directed plasmid motion. Our model predicts less oscillatory ParA dynamics than previously believed, a prediction we verify experimentally. We also show that ParA localization and plasmid positioning depend on the underlying nucleoid morphology, indicating that the chromosomal architecture constrains ParA structure formation. Our directed motion model unifies previously contradictory models for plasmid segregation and provides a robust mechanistic basis for self-organized plasmid spacing that may be widely applicable.  相似文献   
10.
The mechanism of prokaryotic chromosome segregation is not known. MreB, an actin homolog, is a shape-determining factor in rod-shaped prokaryotic cells. Using immunofluorescence microscopy we found that MreB of Escherichia coli formed helical filaments located beneath the cell surface. Flow cytometric and cytological analyses indicated that MreB-depleted cells segregated their chromosomes in pairs, consistent with chromosome cohesion. Overexpression of wild-type MreB inhibited cell division but did not perturb chromosome segregation. Overexpression of mutant forms of MreB inhibited cell division, caused abnormal MreB filament morphology and induced severe localization defects of the nucleoid and of the oriC and terC chromosomal regions. The chromosomal terminus regions appeared cohered in both MreB-depleted cells and in cells overexpressing mutant forms of MreB. Our observations indicate that MreB filaments participate in directional chromosome movement and segregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号