排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Chutharat Chueasiri Ketsuwan Chunthong Keasinee Pitnjam Sriprapai Chakhonkaen Numphet Sangarwut Kanidta Sangsawang Malinee Suksangpanomrung Louise V. Michaelson Johnathan A. Napier Amorntip Muangprom 《PloS one》2014,9(9)
The orosomucoids (ORM) are ER-resisdent polypeptides encoded by ORM and ORMDL (ORM-like) genes. In humans, ORMDL3 was reported as genetic risk factor associated to asthma. In yeast, ORM proteins act as negative regulators of sphingolipid synthesis. Sphingolipids are important molecules regulating several processes including stress responses and apoptosis. However, the function of ORM/ORMDL genes in plants has not yet been reported. Previously, we found that temperature sensitive genetic male sterility (TGMS) rice lines controlled by tms2 contain a deletion of about 70 kb in chromosome 7. We identified four genes expressed in panicles, including an ORMDL ortholog, as candidates for tms2. In this report, we quantified expression of the only two candidate genes normally expressed in anthers of wild type plants grown in controlled growth rooms for fertile and sterile conditions. We found that only the ORMDL gene (LOC_Os07g26940) showed differential expression under these conditions. To better understand the function of rice ORMDL genes, we generated RNAi transgenic rice plants suppressing either LOC_Os07g26940, or all three ORMDL genes present in rice. We found that the RNAi transgenic plants with low expression of either LOC_Os07g26940 alone or all three ORMDL genes were sterile, having abnormal pollen morphology and staining. In addition, we found that both sphingolipid metabolism and expression of genes involved in sphingolipid synthesis were perturbed in the tms2 mutant, analogous to the role of ORMs in yeast. Our results indicated that plant ORMDL proteins influence sphingolipid homeostasis, and deletion of this gene affected fertility resulting from abnormal pollen development. 相似文献
2.
3.
Khwanruedee?Chunthong Keasinee?Pitnjam Sriprapai?Chakhonkaen Numphet?Sangarwut Natjaree?Panyawut Thiwawan?Wasinanon Kittipat?Ukoskit Amorntip?MuangpromEmail author 《Journal of Plant Growth Regulation》2017,36(4):970-982
Understanding the molecular mechanisms regulating rice’s response to drought stress is important for cereal crop development. We investigated the physiological and gene expression responses of three drought-tolerant and two drought-sensitive unrelated rice cultivars at the reproductive stage. Leaf water loss and leaf rolling tests distinguished these two groups from each other. Both 7 and 14 days of drought stress affected most of the tested agronomic traits including grain yield, and the effects were stronger in the drought-sensitive cultivars. Fourteen days of drought stress severely reduced grain yield in the sensitive cultivars. Expression levels of 50 genes previously published were examined in panicles. Of these, 25 genes were expressed in panicles and could be classified into 6 groups. LOC_Os02g51350, a Kelch domain-containing F-box gene, was selected for further studies including expression analysis in panicles during the 14-day drought stress, domain analysis, and analysis of cis-acting elements in the promoters. All three drought-resistant cultivars possessed the F-box domain, which was absent in the two drought-sensitive cultivars. In addition, drought-related ABRE and DRE/CRT cis-acting elements were more abundant in Os02g51350 promoters of cultivars with good grain yield under drought stress than in promoters of cultivars with severe yield reduction. Our results suggest that the F-box version of Os02g51350 is important for maintenance of grain yield under drought. 相似文献
4.
Identification of a deletion in <Emphasis Type="Italic">tms2</Emphasis> and development of gene-based markers for selection 总被引:1,自引:0,他引:1
Rice is one of the most important food crops. The temperature-sensitive genic male sterility (TGMS) system provides a great potential for improving food production by hybrids. The use of TGMS system is simple, inexpensive, effective, and eliminates the limitations of the conventional three-line system. A rice gene, tms2, generated by irradiation of a japonica variety has been reported to control TGMS in several rice lines. Previous studies reported genetic markers linked to this gene, and the gene was transferred to an aromatic Thai cultivar. Using information obtained from published databases, we located positions of the reported genetic markers flanking the gene in rice genomic sequences, and developed gene-based markers located inside the flanking markers for polymorphism detection. We found that inbred indica tms2 mutant plants contain about 1 Mb of japonica DNA, in which at least 70 kb was deleted. Using RT-PCR for expression analysis, four genes out of seven genes annotated as expressed proteins located inside the deletion showed expression in panicles. These genes could be responsible for TGMS phenotypes of tms2. In addition, we developed gene-based markers flanking and inside the deletion for selecting the tms2 gene in breeding populations. By genotyping 102 diverse rice lines including 38 Thai rice lines, 5 species of wild rice, and 59 exotic rice lines including TGMS lines and cultivars with desirable traits, a gene-based marker located inside the deletion and one flanking marker were shown to be highly specific for the tms2 mutant. 相似文献
1