首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5552篇
  免费   472篇
  国内免费   7篇
  6031篇
  2024年   7篇
  2023年   47篇
  2022年   104篇
  2021年   252篇
  2020年   116篇
  2019年   155篇
  2018年   156篇
  2017年   143篇
  2016年   237篇
  2015年   394篇
  2014年   398篇
  2013年   394篇
  2012年   554篇
  2011年   533篇
  2010年   295篇
  2009年   254篇
  2008年   397篇
  2007年   279篇
  2006年   278篇
  2005年   248篇
  2004年   217篇
  2003年   196篇
  2002年   155篇
  2001年   12篇
  2000年   11篇
  1999年   18篇
  1998年   28篇
  1997年   17篇
  1996年   12篇
  1995年   8篇
  1994年   7篇
  1993年   9篇
  1992年   9篇
  1991年   5篇
  1990年   7篇
  1989年   10篇
  1988年   5篇
  1987年   9篇
  1985年   4篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1962年   4篇
  1914年   2篇
排序方式: 共有6031条查询结果,搜索用时 15 毫秒
1.

Background  

Ethidium homodimer is a cell-membrane impermeant nuclear fluorochrome that has been widely used to identify necrotic cells in culture. Here, we describe a novel technique for evaluating necrosis of epithelial cells in the proximal tubule that involves perfusing ethidium homodimer through the intact rat kidney. As a positive control for inducing necrosis, rats were treated with 3.5, 1.75, 0.87 and 0.43 mg/kg mercuric chloride (Hg2+, intraperitoneal), treatments which have previously been shown to rapidly cause dose-dependent necrosis of the proximal tubule. Twenty-four h after the administration of Hg2+, ethidium homodimer (5 μM) was perfused through the intact left kidney while the animal was anesthetized. The kidney was then removed, placed in embedding medium, frozen and cryosectioned at a thickness of 5 μm. Sections were permeabilized with -20°C methanol and then stained with 4',6-diamidino-2-phenylindole (DAPI) to label total nuclei. Total cell number was determined from the DAPI staining in random microscopic fields and the number of necrotic cells in the same field was determined by ethidium homodimer labeling.  相似文献   
2.
A Folta  I G Joshua  R C Webb 《Life sciences》1989,45(26):2627-2635
Endothelin has been characterized as a potent constricting factor. The purpose of this study was to investigate possible dilator effects of this peptide and to examine whether dilator responses occur through an endothelium-mediated mechanism in guinea pig coronary resistance vessels and isolated aortic rings. Changes in perfusion pressure after bolus injections of endothelin were measured using a constant-flow modified Langendorff preparation with a transducer between the flow pump and the heart. An immediate fall in perfusion pressure, averaging 6 mmHg, was observed after injection of endothelin (10(-14)-10(-12) moles). This effect was maximal at 1 minute and tended to return toward baseline levels within 4 minutes. In response to endothelin (10(-9) M), isolated aortic rings relaxed 35% after being contracted with prostaglandin F2 alpha (10(-7) M). In both preparations, dilation was converted to constriction after endothelium damage by oxygen radicals or endothelium removal (mechanical rubbing). Dilator responses to endothelin were blocked by pretreatment for 30 minutes with indomethacin (14 microM) in the presence of an intact endothelium in coronary resistance vessels, whereas in the abdominal aorta they were not. We conclude that endothelin has significant dilator properties and that this effect is opposed by its constrictor action at higher doses. In addition, dilator responses to endothelin require an intact endothelium in both coronary vessels and abdominal aorta. Finally, endothelin-induced dilation in coronary resistance vessels appears to occur through a cyclooxygenase product-mediated mechanism.  相似文献   
3.
The availability of pathogen sequence data and use of genomic surveillance is rapidly increasing. Genomic tools and classification systems need updating to reflect this. Here, rabies virus is used as an example to showcase the potential value of updated genomic tools to enhance surveillance to better understand epidemiological dynamics and improve disease control. Previous studies have described the evolutionary history of rabies virus, however the resulting taxonomy lacks the definition necessary to identify incursions, lineage turnover and transmission routes at high resolution. Here we propose a lineage classification system based on the dynamic nomenclature used for SARS-CoV-2, defining a lineage by phylogenetic methods for tracking virus spread and comparing sequences across geographic areas. We demonstrate this system through application to the globally distributed Cosmopolitan clade of rabies virus, defining 96 total lineages within the clade, beyond the 22 previously reported. We further show how integration of this tool with a new rabies virus sequence data resource (RABV-GLUE) enables rapid application, for example, highlighting lineage dynamics relevant to control and elimination programmes, such as identifying importations and their sources, as well as areas of persistence and routes of virus movement, including transboundary incursions. This system and the tools developed should be useful for coordinating and targeting control programmes and monitoring progress as countries work towards eliminating dog-mediated rabies, as well as having potential for broader application to the surveillance of other viruses.  相似文献   
4.
UPF3 is a key nonsense-mediated mRNA decay (NMD) factor required for mRNA surveillance and eukaryotic gene expression regulation. UPF3 exists as two paralogs (A and B) which are differentially expressed depending on cell type and developmental stage and believed to regulate NMD activity based on cellular requirements. UPF3B mutations cause intellectual disability. The underlying molecular mechanisms remain elusive, as many of the mutations lie in the poorly characterized middle-domain of UPF3B. Here, we show that UPF3A and UPF3B share structural and functional homology to paraspeckle proteins comprising an RNA-recognition motif-like domain (RRM-L), a NONA/paraspeckle-like domain (NOPS-L), and extended α-helical domain. These domains are essential for RNA/ribosome-binding, RNA-induced oligomerization and UPF2 interaction. Structures of UPF2′s third middle-domain of eukaryotic initiation factor 4G (MIF4GIII) in complex with either UPF3B or UPF3A reveal unexpectedly intimate binding interfaces. UPF3B’s disease-causing mutation Y160D in the NOPS-L domain displaces Y160 from a hydrophobic cleft in UPF2 reducing the binding affinity ∼40-fold compared to wildtype. UPF3A, which is upregulated in patients with the UPF3B-Y160D mutation, binds UPF2 with ∼10-fold higher affinity than UPF3B reliant mainly on NOPS-L residues. Our characterization of RNA- and UPF2-binding by UPF3′s middle-domain elucidates its essential role in NMD.  相似文献   
5.
Pseudomonas aeruginosa dominates the complex polymicrobial cystic fibrosis (CF) airway and is a leading cause of death in persons with CF. Oral streptococcal colonization has been associated with stable CF lung function. However, no studies have demonstrated how Streptococcus salivarius, the most abundant streptococcal species found in individuals with stable CF lung disease, potentially improves lung function or becomes incorporated into the CF airway biofilm. By utilizing a two-species biofilm model to probe interactions between S. salivarius and P. aeruginosa, we discovered that the P. aeruginosa exopolysaccharide Psl promoted S. salivarius biofilm formation. Further, we identified a S. salivarius maltose-binding protein (MalE) that is required for promotion of biofilm formation both in vitro and in a Drosophila melanogaster co-infection model. Finally, we demonstrate that promotion of dual biofilm formation with S. salivarius is common among environmental and clinical P. aeruginosa isolates. Overall, our data supports a model in which S. salivarius uses a sugar-binding protein to interact with P. aeruginosa exopolysaccharide, which may be a strategy by which S. salivarius establishes itself within the CF airway microbial community.Subject terms: Bacteriology, Biofilms, Microbiome, Clinical microbiology  相似文献   
6.
In an era of rapid global change, our ability to understand and predict Earth's natural systems is lagging behind our ability to monitor and measure changes in the biosphere. Bottlenecks to informing models with observations have reduced our capacity to fully exploit the growing volume and variety of available data. Here, we take a critical look at the information infrastructure that connects ecosystem modeling and measurement efforts, and propose a roadmap to community cyberinfrastructure development that can reduce the divisions between empirical research and modeling and accelerate the pace of discovery. A new era of data‐model integration requires investment in accessible, scalable, and transparent tools that integrate the expertise of the whole community, including both modelers and empiricists. This roadmap focuses on five key opportunities for community tools: the underlying foundations of community cyberinfrastructure; data ingest; calibration of models to data; model‐data benchmarking; and data assimilation and ecological forecasting. This community‐driven approach is a key to meeting the pressing needs of science and society in the 21st century.  相似文献   
7.
Discovery and integration of data is important in many ecological studies, especially those that concern broad-scale ecological questions. Data discovery and integration are often difficult and time consuming tasks for researchers, which is due in part to the use of informal, ambiguous, and sometimes inconsistent terms for describing data content. Ontologies offer a solution to this problem by providing consistent definitions of ecological concepts that in turn can be used to annotate, relate, and search for data sets. However, unlike in molecular biology or biomedicine, few ontology development efforts exist within ecology. Ontology development often requires considerable expertise in ontology languages and development tools, which is often a barrier for ontology creation in ecology. In this paper we describe an approach for ontology creation that allows ecologists to use common spreadsheet tools to describe different aspects of an ontology. We present conventions for creating, relating, and constraining concepts through spreadsheets, and provide software tools for converting these ontologies into equivalent OWL-DL representations. We also consider inverse translations, i.e., to convert ontologies represented using OWL-DL into our spreadsheet format. Our approach allows large lists of terms to be easily related and organized into concept hierarchies, and generally provides a more intuitive and natural interface for ontology development by ecologists.  相似文献   
8.
9.
Across all kingdoms of biological life, protein-coding genes exhibit unequal usage of synonymous codons. Although alternative theories abound, translational selection has been accepted as an important mechanism that shapes the patterns of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns of codon usage across 74 diverse bacteriophages that infect E. coli, P. aeruginosa, and L. lactis as their primary host. We use the concept of a “genome landscape,” which helps reveal non-trivial, long-range patterns in codon usage across a genome. We develop a series of randomization tests that allow us to interrogate the significance of one aspect of codon usage, such as GC content, while controlling for another aspect, such as adaptation to host-preferred codons. We find that 33 phage genomes exhibit highly non-random patterns in their GC3-content, use of host-preferred codons, or both. We show that the head and tail proteins of these phages exhibit significant bias towards host-preferred codons, relative to the non-structural phage proteins. Our results support the hypothesis of translational selection on viral genes for host-preferred codons, over a broad range of bacteriophages.  相似文献   
10.
The glycosyltransferases (GTs) are an important and functionally diverse family of enzymes involved in glycan and glycoside biosynthesis. Plants have evolved large families of GTs which undertake the array of glycosylation reactions that occur during plant development and growth. Based on the Carbohydrate‐Active enZymes (CAZy) database, the genome of the reference plant Arabidopsis thaliana codes for over 450 GTs, while the rice genome (Oryza sativa) contains over 600 members. Collectively, GTs from these reference plants can be classified into over 40 distinct GT families. Although these enzymes are involved in many important plant specific processes such as cell‐wall and secondary metabolite biosynthesis, few have been functionally characterized. We have sought to develop a plant GTs clone resource that will enable functional genomic approaches to be undertaken by the plant research community. In total, 403 (88%) of CAZy defined Arabidopsis GTs have been cloned, while 96 (15%) of the GTs coded by rice have been cloned. The collection resulted in the update of a number of Arabidopsis GT gene models. The clones represent full‐length coding sequences without termination codons and are Gateway® compatible. To demonstrate the utility of this JBEI GT Collection, a set of efficient particle bombardment plasmids (pBullet) was also constructed with markers for the endomembrane. The utility of the pBullet collection was demonstrated by localizing all members of the Arabidopsis GT14 family to the Golgi apparatus or the endoplasmic reticulum (ER). Updates to these resources are available at the JBEI GT Collection website http://www.addgene.org/ .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号