首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2449篇
  免费   68篇
  2517篇
  2024年   6篇
  2023年   5篇
  2022年   26篇
  2021年   35篇
  2020年   22篇
  2019年   46篇
  2018年   56篇
  2017年   59篇
  2016年   108篇
  2015年   153篇
  2014年   152篇
  2013年   170篇
  2012年   214篇
  2011年   207篇
  2010年   154篇
  2009年   129篇
  2008年   153篇
  2007年   143篇
  2006年   121篇
  2005年   113篇
  2004年   139篇
  2003年   91篇
  2002年   65篇
  2001年   19篇
  2000年   19篇
  1999年   25篇
  1998年   12篇
  1997年   16篇
  1996年   6篇
  1995年   2篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1980年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1857年   1篇
  1856年   2篇
排序方式: 共有2517条查询结果,搜索用时 0 毫秒
1.
AIMS: An investigation was carried out on an oxidative and SDS-stable alkaline protease secreted by Bacillus clausii of industrial significance. METHODS AND RESULTS: Maximum enzyme activity was produced when the bacterium was grown in the medium containing (g l-1): soyabean meal, 15; wheat flour, 10; liquid maltose, 25; K2HPO4, 4; Na2HPO4, 1; MgSO4.7H2O, 0.1; Na2CO3, 6. The enzyme has an optimum pH of around 11 and optimum temperature of 60 degrees C. The alkaline protease showed extreme stability towards SDS and oxidizing agents, which retained its activity above 75 and 110% on treatment for 72 h with 5% SDS and 10% H2O2, respectively. Inhibition profile exhibited by phenylmethylsulphonyl fluoride suggested that the protease from B. clausii belongs to the family of serine proteases. CONCLUSIONS: Bacillus clausii produced high levels of an extracellular protease having high stability towards SDS and H2O2. SIGNIFICANCE AND IMPACT OF THE STUDY: The alkaline protease from B. clausii I-52 is significant for an industrial perspective because of its ability to function in broad pH and temperature ranges in addition to its tolerance and stability in presence of an anionic surfactant, like SDS and oxidants like peroxides and perborates. The enzymatic properties of the protease also suggest its suitable application as additive in detergent formulations.  相似文献   
2.
Heat shock may increase oxidative stress due to increased production of reactive oxygen species and/or the promotion of cellular oxidation events. Therefore, compounds that scavenge reactive oxygen species may regulate heat shock-induced cell death. Recently, it has been shown that the decomposition product of the spin-trapping agent alpha-phenyl-N-t-butylnitrone, N-t-butyl hydroxylamine (NtBHA), mimics alpha-phenyl-N-t-butylnitrone and is much more potent in delaying reactive oxygen species-associated senescence. We investigated the protective role of NtBHA against heat shock-induced apoptosis in U937 cells. Upon exposure to heat shock, there was a distinct difference between the untreated cells and the cells pre-treated with 0.1 mM NtBHA for 2 h in regard to apoptotic parameters, cellular redox status, and mitochondrial function. Upon exposure to heat shock, NtBHA pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax, and down-regulation of Bcl-2 compared to untreated cells. This study indicates that NtBHA may play an important role in regulating the apoptosis induced by heat shock, presumably through scavenging of reactive oxygen species.  相似文献   
3.
A Glycomics approach to detect disease is illustrated in the analyses of human tear fluid for rosacea. The diagnosis of ocular rosacea is particularly challenging in a subgroup of patients that do not present with typical facial skin findings but have ocular signs and symptoms. Indeed, up to 90% of patients with ocular rosacea may have neither obvious roseatic skin changes nor a previous diagnosis of rosacea. Tear fluid was collected from 37 subjects (21 controls and 16 patients with ocular rosacea) after conjunctival stimulation with filter (Schirmer) paper. O-linked oligosaccharides were released from tear fluid by beta-elimination and then purified using solid-phase extraction. Mass spectra were recorded on an external source HiResMALDI with a 7.0 T magnet. Mass spectra were obtained in both the positive and negative modes. However, signals were stronger in the negative mode. Tear fluid samples from rosacea patients yielded distinctive clusters of peaks that extend to higher masses. Patients with rosacea presented several oligomeric series that were not found in the controls. To discriminate the ocular rosacea cases from the normal controls, the sum of absolute intensities of 13 series corresponding to nearly 50 identified mass spectrum peaks was used. Thirty-six out of the 37 samples were correctly classified. This yields a sensitivity of 100% (95% CI 79.5-100) and specificity of 95.2% (95% CI 76.2-99.9). The high abundance of oligosaccharides in the tear fluid of patients with rosacea may lead to an objective diagnostic marker for the disease.  相似文献   
4.
5.
The present investigation tested the hypothesis that nitric oxide (NO) potentiates ATP-sensitive K(+) (K(ATP)) channels by protein kinase G (PKG)-dependent phosphorylation in rabbit ventricular myocytes with the use of patch-clamp techniques. Sodium nitroprusside (SNP; 1 mM) potentiated K(ATP) channel activity in cell-attached patches but failed to enhance the channel activity in either inside-out or outside-out patches. The 8-(4-chlorophenylthio)-cGMP Rp isomer (Rp-CPT-cGMP, 100 microM) suppressed the potentiating effect of SNP. 8-(4-Chlorophenylthio)-cGMP (8-pCPT-cGMP, 100 microM) increased K(ATP) channel activity in cell-attached patches. PKG (5 U/microl) added together with ATP and cGMP (100 microM each) directly to the intracellular surface increased the channel activity. Activation of K(ATP) channels was abolished by the replacement of ATP with ATPgammaS. Rp-pCPT-cGMP (100 microM) inhibited the effect of PKG. The heat-inactivated PKG had little effect on the K(ATP) channels. Protein phosphatase 2A (PP2A, 1 U/ml) reversed the PKG-mediated K(ATP) channel activation. With the use of 5 nM okadaic acid (a PP2A inhibitor), PP2A had no effect on the channel activity. These results suggest that the NO-cGMP-PKG pathway contributes to phosphorylation of K(ATP) channels in rabbit ventricular myocytes.  相似文献   
6.
7.
Structural chemoproteomics and drug discovery   总被引:1,自引:0,他引:1  
Shin D  Heo YS  Lee KJ  Kim CM  Yoon JM  Lee JI  Hyun YL  Jeon YH  Lee TG  Cho JM  Ro S 《Biopolymers》2005,80(2-3):258-263
Our laboratories have developed several technologies to accelerate drug discovery process on the basis of structural chemoproteomics. They include SPS technology for the efficient determination of protein structures, SCP technology for the rapid lead generation and SDF technology for the productive lead optimization. Using these technologies, we could determine many 3D structures of target proteins bound with biologically active chemicals including the structure of phosphodiesterase 5/Viagra complex and obtain highly potent compounds in animal models of obesity, diabetes, cancer and inflammation. In this paper, we will discuss concepts and applications of structural chemoproteomics for drug discovery.  相似文献   
8.
9.
    
The impact of extreme drought and heat stress that occurred in the Midwestern U.S. in 2012 on evapotranspiration (ET), net ecosystem productivity (NEP), and water‐use efficiency (WUE) of three perennial ecosystems (switchgrass, miscanthus, prairie) and a maize/soybean agroecosystem was studied as part of a long‐term experiment. Miscanthus had a slower initial response but an eventually drastic ET as drought intensified, which resulted in the largest water deficit among the crops. The substantially higher ET at peak drought was likely supplied by access to deep soil water, but suggests that stomatal conductance of miscanthus during the drought may respond differently than the other ecosystems, consistent with an anisohydric strategy. While there was a discrepancy in the water consumption of maize and switchgrass/prairie in the early time of drought, all these ecosystems followed a water‐saving strategy when drought intensified. The gross primary production (GPP) of miscanthus dropped, but was reversible, when temperature reached 40 °C and still provided the largest total GPP among the ecosystems. Increased ET for miscanthus during 2012 resulted a large decline in ecosystem WUE compared to what was observed in other years. The biophysical responses of miscanthus measured during an extreme, historic drought suggest that this species can maintain high productivity longer than other ecosystems during a drought at the expense of water use. While miscanthus maintained productivity during drought, recovery lagged associated with depleted soil moisture. The enhanced ET of miscanthus may intensify droughts through increase supply of deep soil moisture to the atmosphere.  相似文献   
10.
Shin R  An JM  Park CJ  Kim YJ  Joo S  Kim WT  Paek KH 《Plant physiology》2004,135(1):561-573
Capsicum annuum tobacco mosaic virus (TMV)-induced clone 1 (CaTin1) gene was expressed early during incompatible interaction of hot pepper (Caspsicum annuum) plants with TMV and Xanthomonas campestris. RNA-blot analysis showed that CaTin1 gene was expressed only in roots in untreated plants and induced mainly in leaf in response to ethylene, NaCl, and methyl viologen but not by salicylic acid and methyl jasmonate. The ethylene dependence of CaTin1 induction upon TMV inoculation was demonstrated by the decrease of CaTin1 expression in response to several inhibitors of ethylene biosynthesis or its action. Transgenic tobacco (Nicotiana tabacum) plants expressing CaTin1 gene in sense- or antisense-orientation showed interesting characteristics such as the accelerated growth and the enhanced resistance to biotic as well as abiotic stresses. Such characteristics appear to be caused by the elevated level of ethylene and H2O2. Moreover, in transgenic plants expressing antisense CaTin1 gene, the expression of some pathogenesis-related genes was enhanced constitutively, which may be mainly due to the increased ethylene level. The promoter of CaTin1 has four GCC-boxes, two AT-rich regions, and an elicitor-inducible W-box. The induction of the promoter activity by ethylene depends on GCC-boxes and by TMV on W-box. Taken together, we propose that the CaTin1 up-regulation or down-regulation interferes with the redox balance of plants leading to the altered response to ethylene and biotic as well as abiotic stresses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号