首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
  国内免费   1篇
  2016年   1篇
  2013年   1篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1992年   1篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
1.
2.
This study presents evidence for a close relationship betweenthe oxidation state of the skeletal muscleCa2+ release channel (RyR1) andits ability to bind calmodulin (CaM). CaM enhances the activity of RyR1in low Ca2+ and inhibits itsactivity in high Ca2+. Oxidation,which activates the channel, blocks the binding of 125I-labeled CaM at bothmicromolar and nanomolar Ca2+concentrations. Conversely, bound CaM slows oxidation-induced cross-linking between subunits of the RyR1 tetramer. Alkylation ofhyperreactive sulfhydryls (<3% of the total sulfhydryls) on RyR1with N-ethylmaleimide completelyblocks oxidant-induced intersubunit cross-linking and inhibitsCa2+-free125I-CaM but notCa2+/125I-CaMbinding. These studies suggest that1) the sites on RyR1 for bindingapocalmodulin have features distinct from those of theCa2+/CaM site,2) oxidation may alter the activityof RyR1 in part by altering its interaction with CaM, and3) CaM may protect RyR1 fromoxidative modifications during periods of oxidative stress.

  相似文献   
3.
NYGGF4 is a recently discovered gene that is involved in obesity-associated insulin resistance. It has been suggested that mitochondrial dysfunction might be responsible for the development of insulin resistance induced by NYGGF4 overexpression. In the present study, we aimed to define the impact of down-regulating NYGGF4 expression by RNA interference (RNAi) on the insulin sensitivity and mitochondrial function of 3T3-L1 adipocytes. The results revealed that NYGGF4 knockdown enhanced the glucose uptake of adipocytes, which reconfirmed the regulatory function of NYGGF4 in adipocyte insulin sensitivity. However, an unexpected observation was that knockdown of NYGGF4 reduced intracellular ATP concentration and promoted an increase in mitochondrial transmembrane potential (ΔΨm) and reactive oxygen species (ROS) level without affecting mitochondrial morphology or mtDNA. Therefore, the role of NYGGF4 in mitochondrial function remains unclear, and further animal studies are needed to explore the biological function of this gene.  相似文献   
4.
5.
A fragment of RyR1 (amino acids 4064-4210) is predicted to fold to at least one lobe of calmodulin and to bind Ca(2+). This fragment of RyR1 (R4064-4210) was subcloned, expressed, refolded, and purified. Consistent with the predicted folding pattern, R4064-4210 was found to bind two molecules of Ca(2+) and undergo a structural change upon binding Ca(2+) that exposes hydrophobic amino acids. R4064-4210 also binds to RyR1, the L-type Ca(2+) channel (Cav(1.1)), and several synthetic calmodulin binding peptides. Both R4064-4210 and a peptide representing the calmodulin-binding region of RyR1 (R3614-3643) alter the Ca(2+) dependence of ((3)H)ryanodine binding to RyR1, suggesting that they may both be interfering with an intramolecular interaction between amino acids 4064-4210 and amino acids 3614-3643 in the native RyR1 to alter or regulate the response of the channel to changes in Ca(2+) concentration. The finding that a domain within RyR1 binds Ca(2+) and interacts with calmodulin-binding motifs may provide insights into the mechanism for calcium- and calmodulin-dependent regulation of this channel and perhaps for its regulation by the L-type Ca(2+) channel.  相似文献   
6.
The cardiac L-type voltage-dependent calcium channel is responsible for initiating excitation-contraction coupling. Three sequences (amino acids 1609-1628, 1627-1652, and 1665-1685, designated A, C, and IQ, respectively) of its alpha(1) subunit contribute to calmodulin (CaM) binding and Ca(2+)-dependent inactivation. Peptides matching the A, C, and IQ sequences all bind Ca(2+)CaM. Longer peptides representing A plus C (A-C) or C plus IQ (C-IQ) bind only a single molecule of Ca(2+)CaM. Apocalmodulin (ApoCaM) binds with low affinity to the IQ peptide and with higher affinity to the C-IQ peptide. Binding to the IQ and C peptides increases the Ca(2+) affinity of the C-lobe of CaM, but only the IQ peptide alters the Ca(2+) affinity of the N-lobe. Conversion of the isoleucine and glutamine residues of the IQ motif to alanines in the channel destroys inactivation (Zühlke et al., 2000). The double mutation in the peptide reduces the interaction with apoCaM. A mutant CaM unable to bind Ca(2+) at sites 3 and 4 (which abolishes the ability of CaM to inactivate the channel) binds to the IQ, but not to the C or A peptide. Our data are consistent with a model in which apoCaM binding to the region around the IQ motif is necessary for the rapid binding of Ca(2+) to the C-lobe of CaM. Upon Ca(2+) binding, this lobe is likely to engage the A-C region.  相似文献   
7.
Calmodulin activates the skeletal muscle Ca(2+) release channel RYR1 at nm Ca(2+) concentrations and inhibits the channel at microm Ca(2+) concentrations. Using a deletion mutant of calmodulin, we demonstrate that amino acids 2-8 are required for high affinity binding of calmodulin to RYR1 at both nm and microm Ca(2+) concentrations and are required for maximum inhibition of the channel at microm Ca(2+) concentrations. In contrast, the addition of three amino acids to the N terminus of calmodulin increased the affinity for RYR1 at both nm and microm Ca(2+) concentrations, but destroyed its functional effects on RYR1 at nm Ca(2+). Using both full-length RYR1 and synthetic peptides, we demonstrate that the calmodulin-binding site on RYR1 is likely to be noncontiguous, with the C-terminal lobe of both apocalmodulin and Ca(2+)-calmodulin binding to amino acids between positions 3614 and 3643 and the N-terminal lobe binding at sites that are not proximal in the primary sequence. Ca(2+) binding to the C-terminal lobe of calmodulin converted it from an activator to an inhibitor, but an interaction with the N-terminal lobe was required for a maximum effect on RYR1. This interaction apparently depends on the native sequence or structure of the first few amino acids at the N terminus of calmodulin.  相似文献   
8.
Both apocalmodulin (Ca(2+)-free calmodulin) and Ca(2+)-calmodulin bind to and regulate the activity of skeletal muscle Ca(2+) release channel (ryanodine receptor, RYR1). Both forms of calmodulin protect sites after amino acids 3630 and 3637 on RYR1 from trypsin cleavage. Only apocalmodulin protects sites after amino acids 1982 and 1999 from trypsin cleavage. Ca(2+)-calmodulin and apocalmodulin both bind to two different synthetic peptides representing amino acids 3614-3643 and 1975-1999 of RYR1, but Ca(2+)-calmodulin has a higher affinity than apocalmodulin for both peptides. Cysteine 3635, within the 3614-3643 sequence of RYR1, can form a disulfide bond with a cysteine on an adjacent subunit within the RYR1 tetramer. The second cysteine is now shown to be between amino acids 2000 and 2401. The close proximity of the cysteines forming the intersubunit disulfide to the two sites that bind calmodulin suggests that calmodulin is binding at a site of intersubunit contact, perhaps with one lobe bound between amino acids 3614 and 3643 on one subunit and the second lobe bound between amino acids 1975 and 1999 on an adjacent subunit. This model is consistent with the finding that Ca(2+)-calmodulin and apocalmodulin each bind to a single site per RYR1 subunit (Rodney, G. G., Williams, B. Y., Strasburg, G. M., Beckingham, K., and Hamilton, S. L. (2000) Biochemistry 39, 7807-7812).  相似文献   
9.
青海柳属植物地理分布及其区系特点   总被引:1,自引:0,他引:1  
通过野外调查和查阅大量标本及文献资料,对青海省柳属(SalixL.)植物地理分布和区系特征进行了研究。青海产柳属植物多达45种(含种以下5变种、1变型),隶属15个组(Sect.),分别占青藏高原组、种的100%、40.9%和我国组、种的40.5%、17.5%,居我国第4位。青海柳属植物主要分布于青海东部,包括祁连山系东段和青南高原东南部,垂直分布集中于海拔2000~4000m,是世界柳属植物海拔分布最高的地区之一。青海柳属植物区系特征表现在:(1)种类丰富;(2)多型性突出;(3)地理成分较复杂,以欧亚大陆温带分布成分和青藏高原分布成分为主,中国特有分布占有一定的地位;(4)特有现象不明显,仅占青海种数的8.9%;(5)两雄蕊或单雄蕊的进化类群占绝对优势,占青海种数的93.3%。青海柳属植物与邻近的东部(甘肃东部、陕西)和东南部(四川西部、西藏东部)地区联系密切。由于第三纪以来喜马拉雅和青藏高原不断抬升,形成了适应高寒和干旱环境的青海柳属植物的分布与区系特征。  相似文献   
10.
LIM同源盒转录因子在发育中的作用机制   总被引:2,自引:0,他引:2  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号