首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   8篇
  78篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   7篇
  2012年   10篇
  2011年   7篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   6篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  1999年   1篇
排序方式: 共有78条查询结果,搜索用时 0 毫秒
1.
Research into repair within the circular economy (CE) typically focuses on technical aspects of design, policy, and markets, and often assumes simplified conditions for the user/owner and the product system to explain the barriers to scaling repair activities. However, factors occurring at pre-use stages of the product's life cycle can significantly influence whether, and to what extent, repair is viable or possible, that is, warranty duration, after-sale service provision, and access to necessities. The passing of time can directly and indirectly affect the ability, difficulty, and thus, the likelihood of repair activities being performed at each stage of the product's life cycle. Drawing from the literature and applying inductive systems-thinking tools, we propose a framework for considering the “System of Repairability.” We delineate how the passing of time (temporal dimensions) affects one's ‘‘ability to repair,’’ as a product progresses through different life cycle phases (i.e., breakdown vs. repair vs. disposal), and the point(s) at which the repair is considered or attempted (i.e., year of usage). By integrating life cycle and temporal (time-based) dimensions into a broad System of Repairability framework, we clarify relevant interconnections, iterations, sequences, and timing of decision points, stakeholders, and necessary conditions to facilitate an outcome of successful repair at the individual level, and thus intervention strategies for scaling repair within CE. We discuss how a policy mix can address the life cycle of products and the repair system more holistically. We conclude with a future outlook on how temporal dimensions can inform policy strategies and future research.  相似文献   
2.
The genome organization and expression strategy of the newly identified severe acute respiratory syndrome coronavirus (SARS-CoV) were predicted using recently published genome sequences. Fourteen putative open reading frames were identified, 12 of which were predicted to be expressed from a nested set of eight subgenomic mRNAs. The synthesis of these mRNAs in SARS-CoV-infected cells was confirmed experimentally. The 4382- and 7073 amino acid residue SARS-CoV replicase polyproteins are predicted to be cleaved into 16 subunits by two viral proteinases (bringing the total number of SARS-CoV proteins to 28). A phylogenetic analysis of the replicase gene, using a distantly related torovirus as an outgroup, demonstrated that, despite a number of unique features, SARS-CoV is most closely related to group 2 coronaviruses. Distant homologs of cellular RNA processing enzymes were identified in group 2 coronaviruses, with four of them being conserved in SARS-CoV. These newly recognized viral enzymes place the mechanism of coronavirus RNA synthesis in a completely new perspective. Furthermore, together with previously described viral enzymes, they will be important targets for the design of antiviral strategies aimed at controlling the further spread of SARS-CoV.  相似文献   
3.
The biodiversity crisis has had particularly harsh impacts on marine environments. However, there is still considerable uncertainty about how many species have been seriously impacted and the effectiveness of protection measures (e.g., marine protected areas or MPAs) due to high levels of cryptic species in many taxa. Here, we employ an integrative taxonomy approach to mullet species in the genus Mugil. In addition to its high economic value, this genus is notable for having diversified ~29 million years ago without marked morphological and ecological divergence. We obtained 129 specimens of Mugil from the Coral Coast MPA, the largest of its kind in the Tropical Southwestern Atlantic marine province. Although morphometric and meristic traits revealed six taxonomically recognized species, only five mitochondrial lineages were observed. All individuals morphologically identified as M. incilis belonged to the mitochondrial lineage of Mugil curema, which is consistent with misidentification of morphologically similar species and an overestimation of species diversity. Remarkably, Mugil species in our sample that diverged up to ~23 million years ago are also the most morphologically similar (M. curema and M. rubrioculus), suggesting extreme morphological conservatism, possibly driven by similarities in habitat use and life‐history traits. This study demonstrates the potential utility of integrative taxonomy (including DNA barcoding) for contributing to the conservation and sustainable use of natural resources.  相似文献   
4.
Human overexploitation of natural resources has placed conservation and management as one of the most pressing challenges in modern societies, especially in regards to highly vulnerable marine ecosystems. In this context, cryptic species are particularly challenging to conserve because they are hard to distinguish based on morphology alone, and thus it is often unclear how many species coexist in sympatry, what are their phylogenetic relationships and their demographic history. We answer these questions using morphologically similar species of the genus Mugil that are sympatric in the largest coastal Marine Protected Area in the Tropical Southwestern Atlantic marine province. Using a sub-representation of the genome, we show that individuals are assigned to five highly differentiated genetic clusters that are coincident with five mitochondrial lineages, but discordant with morphological information, supporting the existence of five species with conserved morphology in this region. A lack of admixed individuals is consistent with strong genetic isolation between sympatric species, but the most likely species tree suggests that in one case speciation has occurred in the presence of interspecific gene flow. Patterns of genetic diversity within species suggest that effective population sizes differ up to two-fold, probably reflecting differences in the magnitude of population expansions since species formation. Together, our results show that strong morphologic conservatism in marine environments can lead to species that are difficult to distinguish morphologically but that are characterized by an independent evolutionary history, and thus that deserve species-specific management strategies.Subject terms: Genetic variation, Phylogenetics, Speciation  相似文献   
5.
6.
The RNA-synthesizing machinery of the severe acute respiratory syndrome Coronavirus (SARS-CoV) is composed of 16 non-structural proteins (nsp1–16) encoded by ORF1a/1b. The 148-amino acid nsp10 subunit contains two zinc fingers and is known to interact with both nsp14 and nsp16, stimulating their respective 3′-5′ exoribonuclease and 2′-O-methyltransferase activities. Using alanine-scanning mutagenesis, in cellulo bioluminescence resonance energy transfer experiments, and in vitro pulldown assays, we have now identified the key residues on the nsp10 surface that interact with nsp14. The functional consequences of mutations introduced at these positions were first evaluated biochemically by monitoring nsp14 exoribonuclease activity. Disruption of the nsp10-nsp14 interaction abrogated the nsp10-driven activation of the nsp14 exoribonuclease. We further showed that the nsp10 surface interacting with nsp14 overlaps with the surface involved in the nsp10-mediated activation of nsp16 2′-O-methyltransferase activity, suggesting that nsp10 is a major regulator of SARS-CoV replicase function. In line with this notion, reverse genetics experiments supported an essential role of the nsp10 surface that interacts with nsp14 in SARS-CoV replication, as several mutations that abolished the interaction in vitro yielded a replication-negative viral phenotype. In contrast, mutants in which the nsp10-nsp16 interaction was disturbed proved to be crippled but viable. These experiments imply that the nsp10 surface that interacts with nsp14 and nsp16 and possibly other subunits of the viral replication complex may be a target for the development of antiviral compounds against pathogenic coronaviruses.  相似文献   
7.
The mouse pathobiont Helicobacter hepaticus can induce typhlocolitis in interleukin-10-deficient mice, and H. hepaticus infection of immunodeficient mice is widely used as a model to study the role of pathogens and commensal bacteria in the pathogenesis of inflammatory bowel disease. C57BL/6J Il10−/− mice kept under specific pathogen-free conditions in two different facilities (MHH and MIT), displayed strong differences with respect to their susceptibilities to H. hepaticus-induced intestinal pathology. Mice at MIT developed robust typhlocolitis after infection with H. hepaticus, while mice at MHH developed no significant pathology after infection with the same H. hepaticus strain. We hypothesized that the intestinal microbiota might be responsible for these differences and therefore performed high resolution analysis of the intestinal microbiota composition in uninfected mice from the two facilities by deep sequencing of partial 16S rRNA amplicons. The microbiota composition differed markedly between mice from both facilities. Significant differences were also detected between two groups of MHH mice born in different years. Of the 119 operational taxonomic units (OTUs) that occurred in at least half the cecum or colon samples of at least one mouse group, 24 were only found in MIT mice, and another 13 OTUs could only be found in MHH samples. While most of the MHH-specific OTUs could only be identified to class or family level, the MIT-specific set contained OTUs identified to genus or species level, including the opportunistic pathogen, Bilophila wadsworthia. The susceptibility to H. hepaticus-induced colitis differed considerably between Il10−/− mice originating from the two institutions. This was associated with significant differences in microbiota composition, highlighting the importance of characterizing the intestinal microbiome when studying murine models of IBD.  相似文献   
8.
9.
10.

Objective

Aging is associated with increased oxidative stress levels and impaired neovascularization following ischemia. CuZnSOD has an important role to limit oxidative stress in the vasculature. Here we investigated the role of CuZnSOD for the modulation of ischemia-induced neovascularisation during aging.

Methods and Results

Hindlimb ischemia was surgically induced in young (2- month-old) or older (8-month-old) wild type (WT) and CuZnSOD−/− mice. We found that blood flow recovery after ischemia and vascular density in ischemic muscles were significantly reduced in older compared to young WT mice. Both in young and older mice, CuZnSOD deficiency led to a further reduction of neovascularization. Accordingly, the resulting neovascularisation potential in a young CuZnSOD−/− mouse was similar to that of an older WT mouse. Oxidative stress levels were also increased to similar levels in the ischemic muscles of young CuZnSOD−/− and older WT mice. To identify potential mechanisms involved, we investigated the effect of aging and CuZnSOD deficiency on the number and the function of endothelial progenitor cells (EPCs). Both aging and CuZnSOD deficiency were associated with reduced number of bone marrow and peripheral EPCs. The effect of moderate aging alone on specific functional activities of EPCs (migration, integration into tubules) was modest. However, CuZnSOD deficiency was associated with severe age-dependent defects in EPC functional activities.

Conclusions

CuZnSOD deficiency is associated with accelerated vascular aging and impaired ischemia-induced neovascularization. Our results suggest that in the context of aging, CuZnSOD has an essential role to protect against excessive oxidative stress in ischemic tissues and preserve the function of EPCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号