首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   1篇
  81篇
  2023年   4篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2016年   3篇
  2015年   3篇
  2014年   8篇
  2013年   7篇
  2012年   6篇
  2011年   8篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2003年   1篇
  2002年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
1.
Ethanol, octanoic and decanoic acids are known toxic products of alcoholic fermentation and inhibit yeast functions such as growth and fermentation. pH-stat measurements showed that, in a concentration range up to 20 mg/l, octanoic and decanoic acids increase the rate of passive H+ influx across the plasma membrane of Saccharomyces cerevisiae IGC 3507. Decanoic acid was more active than octanoic acid, which agrees with its higher liposolubility. The fatty acids probably act as H+ carriers, since the magnitude of the effect depended on pH and correlated with the concentration of protonated fatty acids. Esterification of the fatty acids partially abolished the enhancing effect on passive H+ influx. Passive H+ influx showed saturation kinetics with half-maximal activity at 6.6 M H+ (pH 5.2). Contrary to previous findings, ethanol inhibited H+ influx exponentially up to a concentration of 8% (v/v). At higher concentrations, ethanol reactivated H+ influx; the original rate of H+ uptake was reached at 14% (v/v) ethanol. In the same concentration ranges that affected passive H+ influx, ethanol, octanoic and decanoic acids inhibited the fermentation rate. This inhibitory effect of the fatty acids on fermentation rate depended on liposolubility, pH, and esterification in the same way as that found for their effect on passive H+ influx. Inhibition of fermentation by octanoic and decanoic acids could therefore result from their effect on the rate of passive H+ influx. Correspondence to: S. Stevens  相似文献   
2.
3.
The RNase P RNA (rnpB) and protein (rnpA) genes were identified in the two Aquificales Sulfurihydrogenibium azorense and Persephonella marina. In contrast, neither of the two genes has been found in the sequenced genome of their close relative, Aquifex aeolicus. As in most bacteria, the rnpA genes of S. azorense and P. marina are preceded by the rpmH gene coding for ribosomal protein L34. This genetic region, including several genes up- and downstream of rpmH, is uniquely conserved among all three Aquificales strains, except that rnpA is missing in A. aeolicus. The RNase P RNAs (P RNAs) of S. azorense and P. marina are active catalysts that can be activated by heterologous bacterial P proteins at low salt. Although the two P RNAs lack helix P18 and thus one of the three major interdomain tertiary contacts, they are more thermostable than Escherichia coli P RNA and require higher temperatures for proper folding. Related to their thermostability, both RNAs include a subset of structural idiosyncrasies in their S domains, which were recently demonstrated to determine the folding properties of the thermostable S domain of Thermus thermophilus P RNA. Unlike 16S rRNA phylogeny that has placed the Aquificales as the deepest lineage of the bacterial phylogenetic tree, RNase P RNA-based phylogeny groups S. azorense and P. marina with the green sulfur, cyanobacterial, and delta/epsilon proteobacterial branches.  相似文献   
4.

Background  

The thioredoxin system consisting of NADP(H), thioredoxin reductase and thioredoxin provides reducing equivalents to a large and diverse array of cellular processes. Despite a great deal of information on the kinetics of individual thioredoxin-dependent reactions, the kinetic regulation of this system as an integrated whole is not known. We address this by using kinetic modeling to identify and describe kinetic behavioral motifs found within the system.  相似文献   
5.
Kinetic model of sucrose accumulation in maturing sugarcane culm tissue   总被引:2,自引:0,他引:2  
Uys L  Botha FC  Hofmeyr JH  Rohwer JM 《Phytochemistry》2007,68(16-18):2375-2392
Biochemically, it is not completely understood why or how commercial varieties of sugarcane (Saccharum officinarum) are able to accumulate sucrose in high concentrations. Such concentrations are obtained despite the presence of sucrose synthesis/breakdown cycles (futile cycling) in the culm of the storage parenchyma. Given the complexity of the process, kinetic modelling may help to elucidate the factors governing sucrose accumulation or direct the design of experimental optimisation strategies. This paper describes the extension of an existing model of sucrose accumulation (Rohwer, J.M., Botha, F.C., 2001. Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem. J. 358, 437-445) to account for isoforms of sucrose synthase and fructokinase, carbon partitioning towards fibre formation, and the glycolytic enzymes phosphofructokinase (PFK), pyrophosphate-dependent PFK and aldolase. Moreover, by including data on the maximal activity of the enzymes as measured in different internodes, a growth model was constructed that describes the metabolic behaviour as sugarcane parenchymal tissue matures from internodes 3-10. While there was some discrepancy between modelled and experimentally determined steady-state sucrose concentrations in the cytoplasm, steady-state fluxes showed a better fit. The model supports a hypothesis of vacuolar sucrose accumulation against a concentration gradient. A detailed metabolic control analysis of sucrose synthase showed that each isoform has a unique control profile. Fructose uptake by the cell and sucrose uptake by the vacuole had a negative control on the futile cycling of sucrose and a positive control on sucrose accumulation, while the control profile for neutral invertase was reversed. When the activities of these three enzymes were changed from their reference values, the effects on futile cycling and sucrose accumulation were amplified. The model can be run online at the JWS Online database (http://jjj.biochem.sun.ac.za/database/uys).  相似文献   
6.
7.
Biosynthetic networks link to growth and reproduction processes through template-directed synthesis of macromolecules such as polynucleotides and polypeptides. No rate equation exists that captures this link in a way that it can effectively be incorporated into a single computational model of the overall process. This paper describes the derivation of such a generic steady-state rate equation for catalysed, template-directed polymerisation reactions with varying monomer stoichiometry and varying chain length. The derivation is based on a classical Michaelis–Menten mechanism with template binding and an arbitrary number of chain elongation steps that produce a polymer composed of an arbitrary number of monomer types. The rate equation only requires the identity of the first dimer in the polymer sequence; for the remainder only the monomer composition needs be known. Further simplification of a term in the denominator yielded an equation requiring no positional information at all, only the monomer composition of the polymer; this equation still gave an excellent estimate of the reaction rate provided that either the monomer concentrations are at least half-saturating, or the polymer is very long.  相似文献   
8.
Stoicheiometric analysis of metabolic pathways provides a systematic way of determining which metabolite concentrations are subject to constraints, information that may otherwise be very difficult to recognize in a large branched pathway. The procedure involves representing the pathway structure in the form of a matrix and then carrying out row operations to convert the matrix into "row echelon form": this is a form in which as many as possible of the elements on the main diagonal are non-zero, and all of the elements below the main diagonal are zero. If exactly the same operations are carried out on a unit matrix of order equal to the number of intermediate metabolites in the pathway, the resulting matrix allows the stoicheiometric constraints to be read off directly.  相似文献   
9.
Aspects of metabolic regulation can be fruitfully studied with a combination of generic modelling, control analysis and graphical analysis using rate characteristics. This paper analyses a prototypical supply-demand system consisting of a biosynthetic subsystem subject to allosteric inhibition by its product and a demand process that consumes this product. The effect of changes in affinity of the committing supply enzyme for the pathway substrate on the regulatory properties of the supply subsystem is compared for the Monod-Wyman-Changeux and the reversible Hill allosteric enzyme models. We found that the Hill model has a distinct advantage in that the steady-state concentration at which it maintains the product is set by the half-saturating product concentration and is independent of changes in the degree of saturation for substrate. In contrast, with the Monod-Wyman-Changeux model this set point varies with affinity for substrate. Explicitly incorporating reversibility in all rate equations made it possible to distinguish between kinetic and thermodynamic aspects of regulation. Combining the supply and demand rate characteristics allows us to explore both the control distribution at steady state and the regulatory performance of the system over a wide range of demand activities.  相似文献   
10.
We report on previously unknown early archaeological sites in the Bolivian lowlands, demonstrating for the first time early and middle Holocene human presence in western Amazonia. Multidisciplinary research in forest islands situated in seasonally-inundated savannahs has revealed stratified shell middens produced by human foragers as early as 10,000 years ago, making them the oldest archaeological sites in the region. The absence of stone resources and partial burial by recent alluvial sediments has meant that these kinds of deposits have, until now, remained unidentified. We conducted core sampling, archaeological excavations and an interdisciplinary study of the stratigraphy and recovered materials from three shell midden mounds. Based on multiple lines of evidence, including radiocarbon dating, sedimentary proxies (elements, steroids and black carbon), micromorphology and faunal analysis, we demonstrate the anthropogenic origin and antiquity of these sites. In a tropical and geomorphologically active landscape often considered challenging both for early human occupation and for the preservation of hunter-gatherer sites, the newly discovered shell middens provide evidence for early to middle Holocene occupation and illustrate the potential for identifying and interpreting early open-air archaeological sites in western Amazonia. The existence of early hunter-gatherer sites in the Bolivian lowlands sheds new light on the region’s past and offers a new context within which the late Holocene “Earthmovers” of the Llanos de Moxos could have emerged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号