首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   24篇
  165篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   9篇
  2011年   11篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   5篇
  1986年   7篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   8篇
  1977年   1篇
  1976年   4篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1970年   3篇
  1969年   4篇
  1967年   1篇
  1941年   1篇
  1920年   1篇
排序方式: 共有165条查询结果,搜索用时 0 毫秒
1.
Bone resorption in organ cultures of neonatal mouse calvaria was stimulated by choleragen (cholera enterotoxin) in a dose-related manner (0.5 to 5.0 ng/ml). Stimulation was potentiated by the cyclic nucleotide phosphodiesterase inhibitor isobutylmethylxanthine (4 μM) and was inhibited by human calcitonin (100 ng/ml), but not by indomethacin (0.7 μM), an inhibitor of the fatty acid cyclooxygenase. The action of choleragen on cyclic AMP accumulation and bone resorption was consistent with the known characteristics of this toxin: 1. choleragen increased cyclic AMP accumulation in bone cultures; 2. there was a lag period (20 – 120 min) prior to an increase in cyclic AMP accumulation following addition of choleragen; 3. incubation with choleragen for only 4 h stimulated bone resorption in the subsequent 44 h as much as did continuous incubation with choleragen for 48 h; and 4. choleragenoid, the biologically inactive toxoid, did not stimulate bone resorption in the concentration range in which choleragen was active. We conclude that activation of adenylyl cyclase and the subsequent increase in cyclic AMP production can stimulate bone resorption, and that cyclic AMP may, therefore, be involved in the enhanced bone resorption mediated by parathyroid hormone and other agents which increase cyclic AMP in bone.  相似文献   
2.
Heterotrimeric G proteins are components of principal signaling pathways in eukaryotes. In higher organisms, alpha subunits of G proteins have been divided into four families, Gi, Gs, Gq, and G12. We previously identified a G alpha i homologue gna-1 in the filamentous fungus Neurospora crassa. Now we report that deletion of gna-1 leads to multiple phenotypes during the vegetative and sexual cycles in N. crassa. On solid medium, delta gna-1 strains have a slower rate of hyphal apical extension than wild type, a rate that is more pronounced under hyperosmotic conditions or in the presence of a cellophane overlay. delta gna-1 mutants accumulate less mass than wild-type strains, and their mass accumulation is not affected in the same way by exposure to light. delta gna-1 strains are defective in macroconidiation, possessing aerial hyphae that are shorter, contain abnormal swellings, and differentiate adherent macroconidia. During the sexual cycle, delta gna-1 strains are fertile as males. However, the mutants are female-sterile, producing small, aberrant female reproductive structures. After fertilization, delta gna-1 female structures do not enlarge and develop normally, and no sexual spores are produced. Thus, mutation of gna-1 results in sex-specific loss of fertility.  相似文献   
3.
Ionic permeability of the gastric mucosa was measured in six patients with an acute exacerbation of severe generalized rheumatoid arthritis receiving either aspirin and prednisone or aspirin and indomethacin as therapy. The results were compared with those in four patients with benign gastric ulcer and nine normal subjects. Compared with controls H+ concentration was decreased and Na+ concentration increased while corrected H+ flux out of the lumen and Na+ flux into the lumen were significantly increased in the patient groups, indicating increased mucosal permeability. Abnormality of the gastric mucosal barrier persisted in two patients despite healing of their ulcers. Mucosal permeability of patients with rheumatoid arthritis and gastric ulcer did not differ significantly from one another. One rheumatoid patient with a gastric ulcer showed no difference in mucosal permeability to that of the other rheumatoid patients. These studies suggest that increased H+ ion loss contributes to the apparent hyposecretion of acid in patients gastric ulcer; persistence of an abnormal gastric mucosal barrier to H+ ions may explain the high recurrence rate of gastric ulcers; and an abnormal gastric mucosal barrier may be a precursor to gastric ulceration in rheumatoid arthritis.  相似文献   
4.
Summary Eleven monoclonal antibodies were identified that recognized eel electroplax sodium channels. All the monoclonal antibodies specifically immunostained the mature TTX-sensitive sodium channel (M r 265,000) on immunoblots. None of the monoclonal antibodies would precipitate the in vitro translated channel core polypeptide in solution. One monoclonal antibody, 3G4, was found to bind to an epitope involving terminal polysialic acids. Extensive digestion of the channel by the exosialidase, neuraminidase, or partial polysialic acid removal bythe endosialidase, endo-N-acetylneuraminidase, destroy the 3G4 epitope, 3G4 is, therefore, a highly selective probe for the post-translationally attached polysialic acids. Except for this monoclonal antibody, the epitopes recognized by the remaining antibodies were highly resistant to extensive N-linked deglycosylation. Thus, the monoclonal antibodies may be directed against unique post-translationally produced domains of the electroplax sodium channel, presumably sugar groups that are abundant on this protein (Miller, J.A., Agnew, W.S., Levinson, S.R. 1983.Biochemistry 22:462–470). These monoclonal antibodies should prove useful as tools to study discrete post-translational processing events in sodium channel biosynthesis.  相似文献   
5.
6.
7.
GNA-1 and GNA-2 are two G protein alpha subunits from the filamentous fungus Neurospora crassa. Loss of gna-1 leads to multiple phenotypes, while Deltagna-2 strains do not exhibit visible defects. However, Deltagna-1Deltagna-2 mutants are more affected in Deltagna-1 phenotypes. Here we report a biochemical investigation of the roles of GNA-1 and GNA-2 in cAMP metabolism. Assays of Mg2+ ATP-dependent adenylyl cyclase activity (+/-GppNHp) in extracts from submerged cultures indicated that Deltagna-2 strains were normal, whereas Deltagna-1 and Deltagna-1Deltagna-2 strains had only 10-15% the activity of the wild-type control. Levels of the Gbeta protein, GNB-1, were normal in Deltagna-1 strains, excluding altered GNB-1 production as a factor in loss of adenylyl cyclase activity. Steady-state cAMP levels in Deltagna-1 and Deltagna-1Deltagna-2 mutants were reduced relative to wild-type under conditions that result in morphological abnormalities (solid medium), while levels in submerged culture were normal. cAMP phosphodiesterase activities in submerged cultures of Deltagna-1 and/or Deltagna-2 strains were lower than in wild-type; the individual deletions were additive in decreasing activity. These results suggest that in submerged culture, N. crassa, like mammalian systems, possesses compensatory mechanisms that maintain cAMP at relatively constant levels. Furthermore, the finding that Mg2+ATP-dependent adenylyl cyclase activity in wild-type cell extracts could be inhibited using anti-GNA-1 IgG suggests that GNA-1 directly interacts with adenylyl cyclase in N. crassa.  相似文献   
8.
Heterotrimeric G proteins mediate signal transduction pathways to control development in fungal, plant, and animal cells. A recent study in the July issue of Molecular Cell identifies three proteins that, while not displaying sequence similarity to G protein subunits, appear to act as structural mimics of a Gbetagamma dimer to negatively regulate pseudohyphal growth in budding yeast.  相似文献   
9.
Chloroplast transit peptides have been proposed to function as substrates for Hsp70 molecular chaperones. Many models of chloroplast protein import depict Hsp70s as the translocation motors that drive protein import into the organelle, but to our knowledge, no direct evidence has demonstrated that transit peptides function either in vivo or in vitro as substrates for the chaperone. In this report, we demonstrate that DnaK binds SStp (the full-length transit peptide for the precursor to the small subunit of Rubisco) in vivo when fused to either glutathione-S-transferase (GST) or to an His6-S-peptide tag (His-S) via an ATP-dependent mechanism. Three independent biophysical and biochemical assays confirm the ability of DnaK and SStp to interact in vitro. The cochaperones, DnaJ and GrpE, were also associated with the DnaK/SStp complex. Therefore, both GST-SStp and His-S-SStp can be used as affinity-tagged substrates to study prokaryotic chaperone/transit peptide interactions as well as to provide a novel functional probe to study the dynamics of DnaK/DnaJ/GrpE interactions in vivo. The combination of these results provides the first experimental support for a transit peptide-dependent interaction between a chloroplast precursor and Hsp70. These results are discussed in light of a general mechanism for protein translocation into chloroplasts and mitochondria.  相似文献   
10.
Monkey (Mk) CD9 antigen has been shown previously to increase the diphtheria toxin (DT) sensitivity of cells when co-expressed with Mk proHB-EGF (DT receptor). We have elucidated here the mechanism whereby Mk CD9 influences Mk proHB-EGF and present evidence that Mk CD9 is a coreceptor for DT. We observed that Mk CD9 not only increased the DT sensitivity but also increased the DT receptor affinity of cells. Furthermore, the higher the Mk CD9/Mk proHB-EGF ratio, the higher the affinity. In contrast, mouse (Ms) CD9 did not increase the toxin sensitivity or receptor affinity of cells when co-expressed with Mk proHB-EGF. Using Mk/Ms chimeric CD9 molecules, we determined that the second extracellular domain of Mk CD9 is responsible for both increased sensitivity and receptor affinity. This domain of Mk CD9 also interacts with Mk proHB-EGF in a yeast two-hybrid system. Our findings thus suggest that Mk CD9 has a direct physical interaction with Mk proHB-EGF to form a DT receptor complex and that this contact may change the conformation of the receptor to increase DT binding affinity and consequently increase toxin sensitivity. We thus propose that Mk CD9 is a coreceptor for DT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号