首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   614篇
  免费   35篇
  649篇
  2023年   2篇
  2022年   7篇
  2021年   7篇
  2020年   6篇
  2019年   4篇
  2018年   9篇
  2017年   4篇
  2016年   11篇
  2015年   23篇
  2014年   46篇
  2013年   38篇
  2012年   49篇
  2011年   49篇
  2010年   43篇
  2009年   31篇
  2008年   38篇
  2007年   36篇
  2006年   38篇
  2005年   33篇
  2004年   23篇
  2003年   34篇
  2002年   36篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   6篇
  1997年   3篇
  1996年   7篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1982年   6篇
  1981年   5篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有649条查询结果,搜索用时 15 毫秒
1.
2.
Cell-associated heparan sulfate (HS) is endowed with the remarkable ability to bind numerous proteins. As such, it represents a unique system that integrates signaling from circulating ligands with cellular receptors. This polysaccharide is extraordinary complex, and examples that define the structure-function relationship of HS are limited. In particular, it remains difficult to understand the structures by which HS interact with proteins. Among them, interferon-gamma (IFNgamma), a dimeric cytokine, binds to a complex oligosaccharide motif encompassing a N-acetylated glucosamine-rich domain and two highly sulfated sequences, each of which binds to one IFNgamma monomer. Based on this template, we have synthesized a set of glycoconjugate mimetics and evaluated their ability to interact with IFNgamma. One of these molecules, composed of two authentic N-sulfated octasaccharides linked to each other through a 50-Angstroms-long spacer termed 2O(10), displays high affinity for the cytokine and inhibits IFNgamma-HS binding with an IC(50) of 35-40 nm. Interestingly, this molecule also inhibits the binding of IFNgamma to its cellular receptor. Thus, in addition to its ability to delocalize the cytokine from cell surface-associated HS, this compound has direct anti-IFNgamma activity. Altogether, our results represent the first synthetic HS-like molecule that targets a cytokine, strongly validating the HS structural determinants for IFNgamma recognition, providing a new strategy to inhibit IFNgamma in a number of diseases in which the cytokine has been identified as a target, and reinforcing the view that it is possible to create"tailor-made"sequences based on the HS template to isolate therapeutic activities.  相似文献   
3.
4.
Recent studies underline the implication of Liver X Receptors (LXRs) in several prostate diseases such as benign prostatic hyperplasia (BPH) and prostate cancer. In order to understand the molecular mechanisms involved, we derived epithelial cells from dorsal prostate (MPECs) of wild type (WT) or Lxrαβ−/− mice. In the WT MPECs, our results show that LXR activation reduces proliferation and correlates with the modification of the AKT-survival pathway. Moreover, LXRs regulate lipid homeostasis with the regulation of Abca1, Abcg1 and Idol, and, in a lesser extent, Srebp1, Fas and Acc. Conversely cells derived from Lxrαβ−/− mice show a higher basal phosphorylation and consequently activation of the survival/proliferation transduction pathways AKT and MAPK. Altogether, our data point out that the cell model we developed allows deciphering the molecular mechanisms inducing the cell cycle arrest. Besides, we show that activated LXRs regulate AKT and MAPK transduction pathways and demonstrate that LXRs could be good pharmacological targets in prostate disease such as cancer.  相似文献   
5.
In order to identify proteins interacting with the cardiac voltage-gated sodium channel Na(v)1.5, we used the last 66 amino acids of the C-terminus of the channel as bait to screen a human cardiac cDNA library. We identified the protein tyrosine phosphatase PTPH1 as an interacting protein. Pull-down experiments confirmed the interaction, and indicated that it depends on the PDZ-domain binding motif of Na(v)1.5. Co-expression experiments in HEK293 cells showed that PTPH1 shifts the Na(v)1.5 availability relationship toward hyperpolarized potentials, whereas an inactive PTPH1 or the tyrosine kinase Fyn does the opposite. The results of this study suggest that tyrosine phosphorylation destabilizes the inactivated state of Na(v)1.5.  相似文献   
6.
Summary Most patients with the complex association aniridia — predisposition to Wilms' tumor (WAGR syndrome) present with a de novo constitutional deletion of band 11p13. We report a patient with WAGR syndrome and a reciprocal translocation between chromosomes 5 and 11 t(5;11)(q11;p13). High resolution banding cytogenetic analysis and molecular characterization using 11p13 DNA markers showed a tiny deletion encompassing the gene for CAT but sparing the gene for FSHB. This suggests that syndromes associated with apparently balanced translocations may be due to undetectable loss of material at the breakpoint(s) rather than to breakage in the gene itself.  相似文献   
7.
Biological rhythms represent a fundamental property of various living organisms. In particular, circadian rhythms, i.e. rhythms with a period close to 24 hours, help organisms to adapt to environmental daily rhythms. Although various factors can entrain or reset rhythms, they persist even in the absence of external timing cue, showing that their generation is endogenous. Indeed, the suprachiasmatic nucleus (SCN) of the hypothalamus is considered to be the main circadian clock in mammals. Isolated SCN neurons have been shown to display circadian rhythms, and in each cell, a set of genes, called "clock genes", are devoted to the generation and regulation of rhythms. Recently, it has become obvious that the clock located in the SCN is not homogenous, but is rather composed of multiple functional components somewhat reminiscent of its neurochemical organization. The significance and implications of these findings are still poorly understood but pave the way for future exciting studies. Here, current knowledge concerning these distinct neuronal populations and the ways through which synchronization could be achieved, as well as the potential role of neuropeptides in both photic and non-photic resetting of the clock, are summarized. Finally, we discuss the role of the SCN within the circadian system, which also includes oscillators located in various tissues and cell types.  相似文献   
8.
9.
Subcellular localizations of CoA-independent transacylase and phospholipase D enzymes have been investigated in human neutrophils performing a two-step gradient system to separate plasma membranes from internal membranes and from the bulk of granules. The internal membranes were constituted by endoplasmic reticulum and by a subpopulation of specific and tertiary granules. The enzymes activities were assayed in vitro on gradient fractions using exogenous substrates. Following cell prelabelling with [3H]alkyllyso-GPC, we also analyzed the in situ localization of labelled products involving the action of both enzymes. The CoA-independent transacylase activity, together with the CoA-dependent transacylase and acyltransferase activities were only located in the internal membranes. Following 15 min cell labelling, part of the [3H]alkylacyl-GPC was recovered in plasma membranes indicating a rapid redistribution of the acylated compound. Very high contents in arachidonate containing [3H]alkylacyl-GPC were recovered both in plasma membranes and internal membranes. Phospholipase D activity being assayed in the presence of cytosol, GTPγS and gradient fractions, only the plasma membrane fractions from resting or stimulated cells allowed the enzyme to be active. The [3H]alkylacyl-GP and [3H]alkylacyl-GPethanol, phospholipase D breakdown products from [3H]alkylacyl-GPC, obtained after neutrophil prelabelling and activation by phorbol myristate acetate, were exclusively present in the plasma membranes. In contrast, the secondary generated [3H]alkylacylglycerols were equally distributed between plasma and internal membranes. No labelled product was recovered on azurophil granules. These data demonstrate that internal membranes are the site of action of the CoA-independent transacylase and plasma membranes are the site of action of the phospholipase D. This topographical separation between CoA-independent transacylase which generated substrate and phospholipase D which degraded it, suggested that subcellular localisation and traffic of substrates within the cell can be important to regulate the enzymes. © 1996 Wiley-Liss, Inc.  相似文献   
10.
Perret D  Rousseau F  Tran V  Gascan H 《Proteins》2005,60(1):14-26
Human interleukin-6 (hIL-6) is a pleiotropic mediator of activation and proliferation across a large number of different cell types. Human herpesvirus-8 (HHV-8) has been associated with classical and AIDS-related Kaposi's sarcoma (KS). HHV-8 encodes viral IL-6 (vIL-6), a functional homolog of human interleukin-6, that promotes the growth of KS and of some lymphoma cells. Signaling induced by human IL-6 requires recruitment of the glycoprotein gp130, which acts as the signal transducing chain, and of IL-6Ralpha, which is necessary for cognate recognition and high affinity receptor complex formation. In contrast, the formation of a functional complex between vIL-6 and gp130 does not require the presence of IL-6Ralpha. The physico-chemical properties of vIL-6 have been analyzed and compared to those of hIL-6 and of the receptor chains, gp130 and IL-6Ralpha. Interaction sites on vIL-6 involve more hydrophobic residues than those of hIL-6. The electrostatic fields induced by vIL-6 and IL-6Ralpha are repulsive and prevent interaction between vIL-6 and IL-6Ralpha, whereas the electrostatic field induced by hIL-6 steers the complex formation with IL-6Ralpha. Subsequently, electrostatic binding free energy in the vIL-6/IL-6Ralpha complex is destabilizing, whereas it is stabilizing in the complex comprising hIL-6. These properties result from charge reversals between viral and human IL-6, an unusual phenomenon of amino acid substitutions within a homologous protein family. This suggests a selection pressure for vIL-6 to by-pass the IL-6Ralpha control of host defense against virus infection. This selection pressure has yielded the reversal of electrostatic properties of vIL-6 when compared to hIL-6.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号