全文获取类型
收费全文 | 75篇 |
免费 | 11篇 |
专业分类
86篇 |
出版年
2021年 | 1篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2016年 | 4篇 |
2015年 | 7篇 |
2014年 | 4篇 |
2011年 | 3篇 |
2010年 | 4篇 |
2009年 | 6篇 |
2008年 | 2篇 |
2007年 | 8篇 |
2006年 | 4篇 |
2005年 | 4篇 |
2004年 | 4篇 |
2003年 | 4篇 |
2001年 | 1篇 |
2000年 | 3篇 |
1998年 | 5篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1981年 | 3篇 |
1979年 | 1篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有86条查询结果,搜索用时 18 毫秒
1.
2.
Caswell CC Han R Hovis KM Ciborowski P Keene DR Marconi RT Lukomski S 《Molecular microbiology》2008,67(3):584-596
Non-specific activation of the complement system is regulated by the plasma glycoprotein factor H (FH). Bacteria can avoid complement-mediated opsonization and phagocytosis through acquiring FH to the cell surface. Here, we characterize an interaction between the streptococcal collagen-like protein Scl1.6 of M6-type group A Streptococcus (GAS) and FH. Using affinity chromatography with immobilized recombinant Scl1.6 protein, we co-eluted human plasma proteins with molecular weight of 155 kDa, 43 kDa and 38 kDa. Mass spectrometry identified the 155 kDa band as FH and two other bands as isoforms of the FH-related protein-1. The identities of all three bands were confirmed by Western immunoblotting with specific antibodies. Structure-function relation studies determined that the globular domain of the Scl1.6 variant specifically binds FH while fused to collagenous tails of various lengths. This binding is not restricted to Scl1.6 as the phylogenetically linked Scl1.55 variant also binds FH. Functional analyses demonstrated the cofactor activity of the rScl1.6-bound FH for factor I-mediated cleavage of C3b. Finally, purified FH bound to the Scl1.6 protein present in the cell wall material obtained from M6-type GAS. In conclusion, we have identified a functional interaction between Scl1 and plasma FH, which may contribute to GAS evasion of complement-mediated opsonization and phagocytosis. 相似文献
3.
4.
Michael CW Chan Renee WY Chan Wendy CL Yu Carol CC Ho WH Chui CK Lo Kit M Yuen Yi Guan John M Nicholls JS Malik Peiris 《Respiratory research》2009,10(1):102
Background
Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.Aim
To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.Methods
We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.Results
We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.Conclusion
The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease. 相似文献5.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle. 相似文献
6.
P J Blackshear R A Nemenoff J G Hovis D L Halsey D J Stumpo J K Huang 《Molecular endocrinology (Baltimore, Md.)》1987,1(1):44-52
Insulin and tumor-promoting phorbol esters such as phorbol 12-myristate 13-acetate (PMA) share some biological activities in normal hepatocytes and in some lines of cultured hepatoma cells. To investigate the possibility that some of these common effects might involve a common pathway, we examined the effects of insulin and PMA on several biological processes in normal and protein kinase C-deficient H4IIE rat hepatoma cells. Protein kinase C deficiency was achieved by preincubating the cells in high concentrations of PMA, and was documented by direct enzyme measurement in soluble and particulate cellular fractions, and by analysis of immunoreactive protein kinase C concentrations in whole cellular homogenates. In the protein kinase C-deficient cells, the following actions of insulin remained at near normal levels: stimulated phosphorylation of the ribosomal protein S6; activation of a ribosomal S6 protein kinase; and increases in ornithine decarboxylase activity and mRNA accumulation. PMA stimulated all of these responses in the normal cells, but none of them in the PMA-pretreated cells. We conclude that insulin can exert some of its actions in a normal manner in protein kinase C-deficient H4IIE hepatoma cells (ATCC CRL 1548) and that some of the actions insulin holds in common with PMA may be due to common activation of one or more distal pathways. A candidate for such a distal step is activation of the ribosomal protein S6 protein kinase. 相似文献
7.
The contractile basis of amoeboid movement: V. The control of gelation, solation, and contraction in extracts from dictyostelium discoideum 总被引:7,自引:22,他引:7 下载免费PDF全文
Motile extracts have been prepared from Dictyostelium discoideum by homogenization and differential centrifugation at 4 degrees C in a stabilization solution (60). These extracts gelled on warming to 25 degrees Celsius and contracted in response to micromolar Ca++ or a pH in excess of 7.0. Optimal gelation occurred in a solution containing 2.5 mM ethylene glycol-bis (β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA), 2.5 mM piperazine-N-N'-bis [2-ethane sulfonic acid] (PIPES), 1 mM MgC1(2), 1 mM ATP, and 20 mM KCI at ph 7.0 (relaxation solution), while micromolar levels of Ca++ inhibited gelation. Conditions that solated the gel elicited contraction of extracts containing myosin. This was true regardless of whether chemical (micromolar Ca++, pH >7.0, cytochalasin B, elevated concentrations of KCI, MgC1(2), and sucrose) or physical (pressure, mechanical stress, and cold) means were used to induce solation. Myosin was definitely required for contraction. During Ca++-or pH-elicited contraction: (a) actin, myosin, and a 95,000-dalton polypeptide were concentrated in the contracted extract; (b) the gelation activity was recovered in the material sqeezed out the contracting extract;(c) electron microscopy demonstrated that the number of free, recognizable F-actin filaments increased; (d) the actomyosin MgATPase activity was stimulated by 4- to 10-fold. In the absense of myosin the Dictyostelium extract did not contract, while gelation proceeded normally. During solation of the gel in the absense of myosin: (a) electron microscopy demonstrated that the number of free, recognizable F- actin filaments increased; (b) solation-dependent contraction of the extract and the Ca++-stimulated MgATPase activity were reconstituted by adding puried Dictyostelium myosin. Actin purified from the Dictyostelium extract did not gel (at 2 mg/ml), while low concentrations of actin (0.7-2 mg/ml) that contained several contaminating components underwent rapid Ca++ regulated gelation. These results indicated : (a) gelation in Dictyostelium extracts involves a specific Ca++-sensitive interaction between actin and several other components; (b) myosin is an absolute requirement for contraction of the extract; (c) actin-myosin interactions capable of producing force for movement are prevented in the gel, while solation of the gel by either physical or chemical means results in the release of F-actin capable of interaction with myosin and subsequent contraction. The effectiveness of physical agents in producting contraction suggests that the regulation of contraction by the gel is structural in nature. 相似文献
8.
9.
Gwaltney SL O'Connor SJ Nelson LT Sullivan GM Imade H Wang W Hasvold L Li Q Cohen J Gu WZ Tahir SK Bauch J Marsh K Ng SC Frost DJ Zhang H Muchmore S Jakob CG Stoll V Hutchins C Rosenberg SH Sham HL 《Bioorganic & medicinal chemistry letters》2003,13(7):1363-1366
Inhibitors of farnesyltransferase are effective against a variety of tumors in mouse models of cancer. Clinical trials to evaluate these agents in humans are ongoing. In our effort to develop new farnesyltransferase inhibitors, we have discovered bioavailable aryl tetrahydropyridines that are potent in cell culture. The design, synthesis, SAR and biological properties of these compounds will be discussed. 相似文献
10.
The results described in the accompanying article support the model in
which glucosylphosphoryldolichol (Glc-P-Dol) is synthesized on the
cytoplasmic face of the ER, and functions as a glucosyl donor for three
Glc-P-Dol:Glc0-2Man9-GlcNAc2-P-P-Dol glucosyltransferases (GlcTases) in the
lumenal compartment. In this study, the enzymatic synthesis and structural
characterization by NMR and electrospray-ionization tandem mass
spectrometry of a series of water-soluble beta-Glc-P-Dol analogs containing
2-4 isoprene units with either the cis - or trans - stereoconfiguration in
the beta-position are described. The water- soluble analogs were (1) used
to examine the stereospecificity of the Glc-P-Dol:Glc0-2Man9GlcNAc2-P-P-Dol
glucosyltransferases (GlcTases) and (2) tested as potential substrates for
a membrane protein(s) mediating the transbilayer movement of Glc-P-Dol in
sealed ER vesicles from rat liver and pig brain. The Glc-P-Dol-mediated
GlcTases in pig brain microsomes utilized [3H]Glc-labeled Glc-P-Dol10,
Glc-P-(omega, c )Dol15, Glc-P(omega, t,t )Dol20, and Glc-P-(omega, t,c
)Dol20as glucosyl donors with [3H]Glc3Man9GlcNAc2-P-P-Dol the major product
labeled in vitro. A preference was exhibited for C15-20 substrates
containing an internal cis -isoprene unit in the beta-position. In
addition, the water-soluble analog, Glc-P-Dol10, was shown to enter the
lumenal compartment of sealed microsomal vesicles from rat liver and pig
brain via a protein-mediated transport system enriched in the ER. The
properties of the ER transport system have been characterized. Glc-
P-Dol10was not transported into or adsorbed by synthetic PC-liposomes or
bovine erythrocytes. The results of these studies indicate that (1) the
internal cis -isoprene units are important for the utilization of Glc-P-Dol
as a glucosyl donor and (2) the transport of the water- soluble analog may
provide an experimental approach to assay the hypothetical "flippase"
proposed to mediate the transbilayer movement of Glc-P-Dol from the
cytoplasmic face of the ER to the lumenal monolayer.
相似文献