首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   22篇
  国内免费   2篇
  302篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   5篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   16篇
  2014年   23篇
  2013年   18篇
  2012年   16篇
  2011年   19篇
  2010年   13篇
  2009年   9篇
  2008年   13篇
  2007年   15篇
  2006年   15篇
  2005年   14篇
  2004年   8篇
  2003年   10篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1998年   6篇
  1997年   5篇
  1996年   8篇
  1994年   6篇
  1993年   6篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1968年   1篇
  1966年   2篇
排序方式: 共有302条查询结果,搜索用时 0 毫秒
1.
Platelet-activating factor (PAF) is a phospholipid mediator of inflammation and allergy that is synthesized by several inflammatory cells including neutrophils. Addition of exogenous arachidonic acid to ionophore A23187-stimulated bovine neutrophils led to the inhibition of PAF biosynthesis assayed by incorporation of [3H]acetate into PAF and by bioassay; under the same conditions, leukotriene B4 (LTB4) formation was not decreased. The activities of the PAF metabolism enzymes indicated that the PAF synthesis inhibition by arachidonic acid is mediated via the acetyltransferase inhibition which is the last enzyme of the PAF formation. Another unsaturated fatty acid, oleic acid, exhibited the same inhibitory effect on [3H]acetate-PAF formation; however, the saturated stearic acid did not lead to any inhibition. These findings suggest that liberation of unsaturated fatty acids from membrane phospholipids, as a consequence of phospholipase A2 activation, would modulate PAF formation via inhibition of the acetyltransferase. In addition, the utilization of arachidonic acid oleic acids in activated neutrophils furnishes an easy means of blocking PAF synthesis in order to understand the role of this mediator in cellular processes.  相似文献   
2.
Mycobacteria use the dedicated type VII protein secretion systems ESX-1 and ESX-5 to secrete virulence factors across their highly hydrophobic cell envelope. The substrates of these systems include the large mycobacterial PE and PPE protein families, which are named after their characteristic Pro-Glu and Pro-Pro-Glu motifs. Pathogenic mycobacteria secrete large numbers of PE/PPE proteins via the major export pathway, ESX-5. In addition, a few PE/PPE proteins have been shown to be exported by ESX-1. It is not known how ESX-1 and ESX-5 recognize their cognate PE/PPE substrates. In this work, we investigated the function of the cytosolic protein EspG(5), which is essential for ESX-5-mediated secretion in Mycobacterium marinum, but for which the role in secretion is not known. By performing protein co-purifications, we show that EspG(5) interacts with several PPE proteins and a PE/PPE complex that is secreted by ESX-5, but not with the unrelated ESX-5 substrate EsxN or with PE/PPE proteins secreted by ESX-1. Conversely, the ESX-1 paralogue EspG(1) interacted with a PE/PPE couple secreted by ESX-1, but not with PE/PPE substrates of ESX-5. Furthermore, structural analysis of the complex formed by EspG(5) and PE/PPE indicates that these proteins interact in a 1:1:1 ratio. In conclusion, our study shows that EspG(5) and EspG(1) interact specifically with PE/PPE proteins that are secreted via their own ESX systems and suggests that EspG proteins are specific chaperones for the type VII pathway.  相似文献   
3.
Plant genomes are earmarked with defined patterns of chromatin marks. Little is known about the stability of these epigenomes when related, but distinct genomes are brought together by intra‐species hybridization. Arabidopsis thaliana accessions and their reciprocal hybrids were used as a model system to investigate the dynamics of histone modification patterns. The genome‐wide distribution of histone modifications H3K4me2 and H3K27me3 in the inbred parental accessions Col‐0, C24 and Cvi and their hybrid offspring was compared by chromatin immunoprecipitation in combination with genome tiling array hybridization. The analysis revealed that, in addition to DNA sequence polymorphisms, chromatin modification variations exist among accessions of A. thaliana. The range of these variations was higher for H3K27me3 (typically a repressive mark) than for H3K4me2 (typically an active mark). H3K4me2 and H3K27me3 were rather stable in response to intra‐species hybridization, with mainly additive inheritance in hybrid offspring. In conclusion, intra‐species hybridization does not result in gross changes to chromatin modifications.  相似文献   
4.
Interaction of the C-terminal domains of Sendai virus (SeV) P and N proteins is crucial for RNA synthesis by correctly positioning the polymerase complex (L+P) onto the nucleocapsid (N/RNA). To better understand this mechanism within the paramyxovirus family, we have studied the complex formed by the SeV C-terminal domains of P (PX) and N (N(TAIL)) proteins by solution nuclear magnetic resonance spectroscopy. We have characterized SeV N(TAIL), which belongs to the class of intrinsically disordered proteins, and precisely defined the binding regions within this latter domain and within PX. SeV N(TAIL) binds with residues 472 to 493, which have a helical propensity (residues 477 to 491) to the surface created by helices alpha2 and alpha3 of PX with a 1:1 stoichiometry, as was also found for measles virus (MV). The binding interface is dominated by charged residues, and the dissociation constant was determined to be 57 +/- 18 microM under conditions of the experiment (i.e., in 0.5 M NaCl). We have also shown that the extreme C terminus of SeV N(TAIL) does not interact with PX, which is in contrast to MV, where a second binding site was identified. In addition, the interaction surfaces of the MV proteins are hydrophobic and a stronger binding constant was found. This gives a good illustration of how selection pressure allowed the C-terminal domains of N and P proteins to evolve concomitantly within this family of viruses in order to lead to protein complexes having the same three-dimensional fold, and thus the same function, but with completely different binding interfaces.  相似文献   
5.
6.
Kubalová  Ivona  Weisshart  Klaus  Houben  Andreas  Schubert  Veit 《Chromosoma》2023,132(1):19-29
Chromosoma - Topoisomerase IIα (Topo IIα) and the centromere-specific histone H3 variant CENH3 are key proteins involved in chromatin condensation and centromere determination,...  相似文献   
7.

Background

Morphological and functional differences of the right and left ventricle are apparent in the adult human heart. A differential contribution of cardiac fibroblasts and smooth muscle cells (populations of epicardium-derived cells) to each ventricle may account for part of the morphological-functional disparity. Here we studied the relation between epicardial derivatives and the development of compact ventricular myocardium.

Results

Wildtype and Wt1CreERT2/+ reporter mice were used to study WT-1 expressing cells, and Tcf21lacZ/+ reporter mice and PDGFRα-/-;Tcf21LacZ/+ mice to study the formation of the cardiac fibroblast population. After covering the heart, intramyocardial WT-1+ cells were first observed at the inner curvature, the right ventricular postero-lateral wall and left ventricular apical wall. Later, WT-1+ cells were present in the walls of both ventricles, but significantly more pronounced in the left ventricle. Tcf21-LacZ + cells followed the same distribution pattern as WT-1+ cells but at later stages, indicating a timing difference between these cell populations. Within the right ventricle, WT-1+ and Tcf21-lacZ+ cell distribution was more pronounced in the posterior inlet part. A gradual increase in myocardial wall thickness was observed early in the left ventricle and at later stages in the right ventricle. PDGFRα-/-;Tcf21LacZ/+ mice showed deficient epicardium, diminished number of Tcf21-LacZ + cells and reduced ventricular compaction.

Conclusions

During normal heart development, spatio-temporal differences in contribution of WT-1 and Tcf21-LacZ + cells to right versus left ventricular myocardium occur parallel to myocardial thickening. These findings may relate to lateralized differences in ventricular (patho)morphology in humans.  相似文献   
8.
Signal peptides that direct protein export in Bacillus subtilis are overall more hydrophobic than signal peptides in Escherichia coli. To study the importance of signal peptide hydrophobicity for protein export in both organisms, the alpha-amylase AmyQ was provided with leucine-rich (high hydrophobicity) or alanine-rich (low hydrophobicity) signal peptides. AmyQ export was most efficiently directed by the authentic signal peptide, both in E. coli and B. subtilis. The leucine-rich signal peptide directed AmyQ export less efficiently in both organisms, as judged from pulse-chase labelling experiments. Remarkably, the alanine-rich signal peptide was functional in protein translocation only in E. coli. Cross-linking of in vitro synthesized ribosome nascent chain complexes (RNCs) to cytoplasmic proteins showed that signal peptide hydrophobicity is a critical determinant for signal peptide binding to the Ffh component of the signal recognition particle (SRP) or to trigger factor, not only in E. coli, but also in B. subtilis. The results show that B. subtilis SRP can discriminate between signal peptides with relatively high hydrophobicities. Interestingly, the B. subtilis protein export machinery seems to be poorly adapted to handle alanine-rich signal peptides with a low hydrophobicity. Thus, signal peptide hydrophobicity appears to be more critical for the efficiency of early stages in protein export in B. subtilis than in E. coli.  相似文献   
9.
This study delivers a comparison of the pectic and hemicellulosic cell wall polysaccharides between the commonly used vegetables broccoli (stem and florets separately), carrot, and tomato. Alcohol-insoluble residues were prepared from the plant sources and sequentially extracted with water, cyclohexane-trans-1,2-diamine tetra-acetic acid, sodium carbonate, and potassium hydroxide solutions, to obtain individual fractions, each containing polysaccharides bound to the cell wall in a specific manner. Structural characterization of the polysaccharide fractions was conducted using colorimetric and chromatographic approaches. Sugar ratios were defined to ameliorate data interpretation. These ratios allowed gaining information concerning polysaccharide structure from sugar composition data. Structural analysis of broccoli revealed organ-specific characteristics: the pectin degree of methoxylation (DM) of stem and florets differed, the sugar composition data inferred differences in polymeric composition. On the other hand, the molar mass (MM) distribution profiles of the polysaccharide fractions were virtually identical for both organs. Carrot root displayed a different MM distribution for the polysaccharides solubilized by potassium hydroxide compared to broccoli and tomato, possibly due to the high contribution of branched pectins to this otherwise hemicellulose-enriched fraction. Tomato fruit showed the pectins with the broadest range in DM, the highest MM, the greatest overall linearity and the lowest extent of branching of rhamnogalacturonan I, pointing to particularly long, linear pectins in tomato compared with the other vegetable organs studied, suggesting possible implications toward functional behavior.  相似文献   
10.

Background

A new subgroup of HIV-1, designated Group P, was recently detected in two unrelated patients of Cameroonian origin. HIV-1 Group P phylogenetically clusters with SIVgor suggesting that it is the result of a cross-species transmission from gorillas. Until today, HIV-1 Group P has only been detected in two patients, and its degree of adaptation to the human host is largely unknown. Previous data have shown that pandemic HIV-1 Group M, but not non-pandemic Group O or rare Group N viruses, efficiently antagonize the human orthologue of the restriction factor tetherin (BST-2, HM1.24, CD317) suggesting that primate lentiviruses may have to gain anti-tetherin activity for efficient spread in the human population. Thus far, three SIV/HIV gene products (vpu, nef and env) are known to have the potential to counteract primate tetherin proteins, often in a species-specific manner. Here, we examined how long Group P may have been circulating in humans and determined its capability to antagonize human tetherin as an indicator of adaptation to humans.

Results

Our data suggest that HIV-1 Group P entered the human population between 1845 and 1989. Vpu, Env and Nef proteins from both Group P viruses failed to counteract human or gorilla tetherin to promote efficient release of HIV-1 virions, although both Group P Nef proteins moderately downmodulated gorilla tetherin from the cell surface. Notably, Vpu, Env and Nef alleles from the two HIV-1 P strains were all able to reduce CD4 cell surface expression.

Conclusions

Our analyses of the two reported HIV-1 Group P viruses suggest that zoonosis occurred in the last 170 years and further support that pandemic HIV-1 Group M strains are better adapted to humans than non-pandemic or rare Group O, N and P viruses. The inability to antagonize human tetherin may potentially explain the limited spread of HIV-1 Group P in the human population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号