首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   4篇
  2021年   1篇
  2015年   4篇
  2014年   12篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   7篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1999年   2篇
  1991年   1篇
  1990年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
1.
Muscarinic activation of tracheal smooth muscle (TSM) involves a M3AChR/heterotrimeric-G protein/NPR-GC coupling mechanism. G protein activators Mastoparan (MAS) and Mastoparan-7 stimulated 4- and 10-fold the NPR-GC respectively, being insensitive to PTX and antibodies against Gαi/o subfamily. Muscarinic and MAS stimulation of NPR-GC was blocked by antibodies against C-terminal of Gαq16, whose expression was confirmed by RT-PCR. However, synthetic peptides from C-terminal of Gαq15/16 stimulated the NPR-GC. Coupling of αq16 to M3AChR is supported by MAS decreased [3H]QNB binding, being abolished after M3AChR-4-DAMP-alkylation. Anti-i3M3AChR antibodies blocked the muscarinic activation of NPR-GC, and synthetic peptide from i3M3AChR (M3P) was more potent than MAS increasing GTPγ [35S] and decreasing the [3H]QNB activities. Coupling between NPR-GC and Gαq16 was evaluated by using trypsin-solubilized-fraction from TSM membranes, which displayed a MAS-sensitive-NPR-GC activity, being immunoprecipitated with anti-Gαq16, also showing an immunoreactive heterotrimeric-G-β -subunit. These data support the existence of a novel transducing cascade, involving Gαq16β γ coupling M3AChR to NPR-GC.  相似文献   
2.
3.

Background

A major hindrance to the development of high yielding biofuel feedstocks is the ability to rapidly assess large populations for fermentable sugar yields. Whilst recent advances have outlined methods for the rapid assessment of biomass saccharification efficiency, none take into account the total biomass, or the soluble sugar fraction of the plant. Here we present a holistic high-throughput methodology for assessing sweet Sorghum bicolor feedstocks at 10 days post-anthesis for total fermentable sugar yields including stalk biomass, soluble sugar concentrations, and cell wall saccharification efficiency.

Results

A mathematical method for assessing whole S. bicolor stalks using the fourth internode from the base of the plant proved to be an effective high-throughput strategy for assessing stalk biomass, soluble sugar concentrations, and cell wall composition and allowed calculation of total stalk fermentable sugars. A high-throughput method for measuring soluble sucrose, glucose, and fructose using partial least squares (PLS) modelling of juice Fourier transform infrared (FTIR) spectra was developed. The PLS prediction was shown to be highly accurate with each sugar attaining a coefficient of determination (R 2 ) of 0.99 with a root mean squared error of prediction (RMSEP) of 11.93, 5.52, and 3.23 mM for sucrose, glucose, and fructose, respectively, which constitutes an error of <4% in each case. The sugar PLS model correlated well with gas chromatography–mass spectrometry (GC-MS) and brix measures. Similarly, a high-throughput method for predicting enzymatic cell wall digestibility using PLS modelling of FTIR spectra obtained from S. bicolor bagasse was developed. The PLS prediction was shown to be accurate with an R 2 of 0.94 and RMSEP of 0.64 μg.mgDW-1.h-1.

Conclusions

This methodology has been demonstrated as an efficient and effective way to screen large biofuel feedstock populations for biomass, soluble sugar concentrations, and cell wall digestibility simultaneously allowing a total fermentable yield calculation. It unifies and simplifies previous screening methodologies to produce a holistic assessment of biofuel feedstock potential.
  相似文献   
4.

Background

Although simulation studies show that combining multiple breeds in one reference population increases accuracy of genomic prediction, this is not always confirmed in empirical studies. This discrepancy might be due to the assumptions on quantitative trait loci (QTL) properties applied in simulation studies, including number of QTL, spectrum of QTL allele frequencies across breeds, and distribution of allele substitution effects. We investigated the effects of QTL properties and of including a random across- and within-breed animal effect in a genomic best linear unbiased prediction (GBLUP) model on accuracy of multi-breed genomic prediction using genotypes of Holstein-Friesian and Jersey cows.

Methods

Genotypes of three classes of variants obtained from whole-genome sequence data, with moderately low, very low or extremely low average minor allele frequencies (MAF), were imputed in 3000 Holstein-Friesian and 3000 Jersey cows that had real high-density genotypes. Phenotypes of traits controlled by QTL with different properties were simulated by sampling 100 or 1000 QTL from one class of variants and their allele substitution effects either randomly from a gamma distribution, or computed such that each QTL explained the same variance, i.e. rare alleles had a large effect. Genomic breeding values for 1000 selection candidates per breed were estimated using GBLUP modelsincluding a random across- and a within-breed animal effect.

Results

For all three classes of QTL allele frequency spectra, accuracies of genomic prediction were not affected by the addition of 2000 individuals of the other breed to a reference population of the same breed as the selection candidates. Accuracies of both single- and multi-breed genomic prediction decreased as MAF of QTL decreased, especially when rare alleles had a large effect. Accuracies of genomic prediction were similar for the models with and without a random within-breed animal effect, probably because of insufficient power to separate across- and within-breed animal effects.

Conclusions

Accuracy of both single- and multi-breed genomic prediction depends on the properties of the QTL that underlie the trait. As QTL MAF decreased, accuracy decreased, especially when rare alleles had a large effect. This demonstrates that QTL properties are key parameters that determine the accuracy of genomic prediction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0124-6) contains supplementary material, which is available to authorized users.  相似文献   
5.

Background  

Lactic acid bacteria are commonly marketed as probiotics based on their putative or proven health-promoting effects. These effects are known to be strain specific but the underlying molecular mechanisms remain poorly understood. Therefore, unravelling the determinants behind probiotic features is of particular interest since it would help select strains that stand the best chance of success in clinical trials. Bile tolerance is one of the most crucial properties as it determines the ability of bacteria to survive in the small intestine, and consequently their capacity to play their functional role as probiotics. In this context, the objective of this study was to investigate the natural protein diversity within the Lactobacillus plantarum species with relation to bile tolerance, using comparative proteomics.  相似文献   
6.
7.
The objective of this simulation study was to compare the effect of the number of QTL and distribution of QTL variance on the accuracy of breeding values estimated with genomewide markers (MEBV). Three distinct methods were used to calculate MEBV: a Bayesian Method (BM), Least Angle Regression (LARS) and Partial Least Square Regression (PLSR). The accuracy of MEBV calculated with BM and LARS decreased when the number of simulated QTL increased. The accuracy decreased more when QTL had different variance values than when all QTL had an equal variance. The accuracy of MEBV calculated with PLSR was affected neither by the number of QTL nor by the distribution of QTL variance. Additional simulations and analyses showed that these conclusions were not affected by the number of individuals in the training population, by the number of markers and by the heritability of the trait. Results of this study show that the effect of the number of QTL and distribution of QTL variance on the accuracy of MEBV depends on the method that is used to calculate MEBV.  相似文献   
8.

Background  

Seeds of the legume plant Lathyrus sativus, which is grown in arid and semi arid tropical regions, contain Diamino Propionic acid (DAP). DAP is a neurotoxin, which, when consumed, causes a disease called Lathyrism. Lathryrism may manifest as Neurolathyrism or Osteolathyrism, in which the nervous system, and bone formation respectively, are affected. DAP ammonia lyase is produced by a few microorganisms such as Salmonella typhi, Salmonella typhimurium and Pseudomonas, and is capable of detoxifying DAP.  相似文献   
9.
10.
Many large, disease-related biobanks of serum samples have been established prior to the widespread use of proteomics in biomarker research. These biobanks may contain relevant information about the disease process, response to therapy or patient classifications especially with respect to long-term follow-up that is otherwise very difficult to obtain based on newly initiated studies, particularly in the case of slowly developing diseases. An important parameter that may influence the composition of serum but that is often not exactly known is clotting time. We therefore investigated the influence of clotting time on the protein and peptide composition of serum by label-free and stable-isotope labeling techniques. The label-free analysis of trypsin-digested serum showed that the overall pattern of LC-MS data is not affected by clotting times varying from 2 to 8h. However, univariate and multivariate statistical analyses revealed that proteins that are directly involved in blood clot formation, such as the clotting-derived fibrinopeptides, change significantly. This is most easily detected in the supernatant of acid-precipitated, immunodepleted serum. Stable-isotope labeling techniques show that truncated or phosphorylated forms of fibrinopeptides A and B increase or decrease depending on clotting time. These patterns can be easily recognized and should be taken into consideration when analyzing LC-MS data using serum sample collections of which the clotting time is not known. Next to the fibrinopeptides, leucine-rich alpha-2-glycoprotein (P02750) was shown to be consistently decreased in samples with clotting times of more than 1h. For prospective studies, we recommend to let blood clot for at least 2h at room temperature using glass tubes with a separation gel and micronized silica to accelerate blood clotting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号