排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. 总被引:17,自引:0,他引:17
The cells of the adult human brain consume approximately 20% of the oxygen utilized by the body although the brain comprises only 2% of the body weight. Reactive oxygen species, which are produced continuously during oxidative metabolism, are generated at high rates within the brain. Therefore, the defense against the toxic effects of reactive oxygen species is an essential task within the brain. An important component of the cellular detoxification of reactive oxygen species is the antioxidant glutathione. The main focus of this short review is recent results on glutathione metabolism of brain astrocytes and neurons in culture. These two types of cell prefer different extracellular precursors for glutathione. Glutathione is involved in the disposal of exogenous peroxides by astrocytes and neurons. In coculture astrocytes protect neurons against the toxicity of reactive oxygen species. One mechanism of this interaction is the supply by astrocytes of glutathione precursors to neurons. 相似文献
2.
Balagopal P Pandey M Chandramohan K Somanathan T Kumar A 《World journal of surgical oncology》2003,1(1):4
Background
Choriocarcinoma is an aggressive neoplasm arising in the body of the uterus. The disease normally spreads to lung and brain. 相似文献3.
Ana C. Coan Brunno M. Campos Clarissa L. Yasuda Bruno Y. Kubota Felipe PG. Bergo Carlos AM. Guerreiro Fernando Cendes 《PloS one》2014,9(1)
Objective
Patients with temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) have diffuse subtle gray matter (GM) atrophy detectable by MRI quantification analyses. However, it is not clear whether the etiology and seizure frequency are associated with this atrophy. We aimed to evaluate the occurrence of GM atrophy and the influence of seizure frequency in patients with TLE and either normal MRI (TLE-NL) or MRI signs of HS (TLE-HS).Methods
We evaluated a group of 172 consecutive patients with unilateral TLE-HS or TLE-NL as defined by hippocampal volumetry and signal quantification (122 TLE-HS and 50 TLE-NL) plus a group of 82 healthy individuals. Voxel-based morphometry was performed with VBM8/SPM8 in 3T MRIs. Patients with up to three complex partial seizures and no generalized tonic-clonic seizures in the previous year were considered to have infrequent seizures. Those who did not fulfill these criteria were considered to have frequent seizures.Results
Patients with TLE-HS had more pronounced GM atrophy, including the ipsilateral mesial temporal structures, temporal lobe, bilateral thalami and pre/post-central gyri. Patients with TLE-NL had more subtle GM atrophy, including the ipsilateral orbitofrontal cortex, bilateral thalami and pre/post-central gyri. Both TLE-HS and TLE-NL showed increased GM volume in the contralateral pons. TLE-HS patients with frequent seizures had more pronounced GM atrophy in extra-temporal regions than TLE-HS with infrequent seizures. Patients with TLE-NL and infrequent seizures had no detectable GM atrophy. In both TLE-HS and TLE-NL, the duration of epilepsy correlated with GM atrophy in extra-hippocampal regions.Conclusion
Although a diffuse network GM atrophy occurs in both TLE-HS and TLE-NL, this is strikingly more evident in TLE-HS and in patients with frequent seizures. These findings suggest that neocortical atrophy in TLE is related to the ongoing seizures and epilepsy duration, while thalamic atrophy is more probably related to the original epileptogenic process. 相似文献4.
Multidrug resistance proteins (Mrps) are ATP-driven export pumps that mediate the export of organic anions from cells. So far only little information is available on expression and physiological functions of Mrps in brain. The expression of mRNAs of six Mrp paralogs in rat brain, as well as in rat cultures enriched for neurones, astrocytes, oligodendrocytes and microglial cells, was studied by qualitative and semiquantitative RT-PCR analysis. In adult rat brain as well as in neural cell cultures the mRNAs coding for Mrp1, Mrp3, Mrp4 and Mrp5 were detected. Semiquantitative analysis revealed that the mRNAs coding for Mrp1 and Mrp5 were more abundant in the four cell culture types than mRNAs of the other Mrps. mRNAs coding for Mrp3 and Mrp4 were found at significant levels in cultured astrocytes and microglial cells, whereas cultures of neurones and oligodendrocytes contained only marginal quantities of these mRNAs. Putative physiological functions of Mrps in brain cells are discussed. 相似文献
5.
Susanna Marg Ulrike Winkler Marcello Sestu Mirko Himmel Madeleine Sch?nherr Janina B?r Amrit Mann Markus Moser Claudia T. Mierke Klemens Rottner Manfred Blessing Johannes Hirrlinger Wolfgang H. Ziegler 《PloS one》2010,5(7)
Background
The cytoskeletal adaptor protein vinculin plays a fundamental role in cell contact regulation and affects central aspects of cell motility, which are essential to both embryonal development and tissue homeostasis. Functional regulation of this evolutionarily conserved and ubiquitously expressed protein is dominated by a high-affinity, autoinhibitory head-to-tail interaction that spatially restricts ligand interactions to cell adhesion sites and, furthermore, limits the residency time of vinculin at these sites. To date, no mutants of the vinculin protein have been characterized in animal models.Methodology/Principal Findings
Here, we investigate vinculin-ΔEx20, a splice variant of the protein lacking the 68 amino acids encoded by exon 20 of the vinculin gene VCL. Vinculin-ΔEx20 was found to be expressed alongside with wild type protein in a knock-in mouse model with a deletion of introns 20 and 21 (VCL-ΔIn20/21 allele) and shows defective head-to-tail interaction. Homozygous VCL-ΔIn20/21 embryos die around embryonal day E12.5 showing cranial neural tube defects and exencephaly. In mouse embryonic fibroblasts and upon ectopic expression, vinculin-ΔEx20 reveals characteristics of constitutive head binding activity. Interestingly, the impact of vinculin-ΔEx20 on cell contact induction and stabilization, a hallmark of the vinculin head domain, is only moderate, thus allowing invasion and motility of cells in three-dimensional collagen matrices. Lacking both F-actin interaction sites of the tail, the vinculin-ΔEx20 variant unveils vinculin''s dynamic binding to cell adhesions independent of a cytoskeletal association, and thus differs from head-to-tail binding deficient mutants such as vinculin-T12, in which activated F-actin binding locks the protein variant to cell contact sites.Conclusions/Significance
Vinculin-ΔEx20 is an active variant supporting adhesion site stabilization without an enhanced mechanical coupling. Its presence in a transgenic animal reveals the potential of splice variants in the vinculin gene to alter vinculin function in vivo. Correct control of vinculin is necessary for embryonic development. 相似文献6.
The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress 总被引:2,自引:0,他引:2
Hirrlinger J König J Keppler D Lindenau J Schulz JB Dringen R 《Journal of neurochemistry》2001,76(2):627-636
The release of glutathione disulfide has been considered an important process for the maintenance of a reduced thiol redox potential in cells during oxidative stress. In cultured rat astrocytes, permanent hydrogen peroxide-induced oxidative stress caused a rapid increase in intracellular glutathione disulfide, which was followed by the appearance of glutathione disulfide in the medium. Under these conditions, the viability of the cells was not compromised. In the presence of cyclosporin A and the quinoline-derivative MK571, inhibitors of multidrug resistance proteins (MRP1 and MRP2), glutathione disulfide accumulated in cells and the release of glutathione disulfide from astrocytes during H2O2 stress was potently inhibited, suggesting a contribution of MRP1 or MRP2 in the release of glutathione disulfide from astrocytes. Using RT-PCR we amplified a cDNA from astroglial RNA with a high degree of homology to MRP1 from humans and mouse. In contrast, no fragment was amplified by using primers specific for rat MRP2. In addition, the presence of MRP1 protein in astrocytes was demonstrated by its immunolocalization in cells expressing the astroglial marker protein glial fibrillary acidic protein. Our data identify rat astrocytes as a MRP1-expressin, brain cell type and demonstrate that this transporter participates in the release of glutathione disulfide from astrocytes during oxidative stress. 相似文献
7.
Wick A Wick W Hirrlinger J Gerhardt E Dringen R Dichgans J Weller M Schulz JB 《Journal of neurochemistry》2004,91(5):1067-1074
The nervous system is frequently the site of symptomatic toxicity of antineoplastic agents. However, there is limited information about the differential vulnerability of neurons, astrocytes and glioma cells. We have analyzed the effects of four chemotherapeutic drugs (lomustine, cisplatin, topotecan and vincristine) on primary cerebellar granule neurons and astrocytes derived from rats. All drugs led to cell death in cerebellar granule neurons in a concentration-dependent manner. Comparison of the EC50 values for cerebellar neurons and astrocytes with the median EC50 values of 12 malignant glioma cell lines demonstrated a large therapeutic range for lomustin and cisplatin. Further, this comparison revealed a 100-fold higher sensitivity of cerebellar neurons towards vincristine and 10-fold higher sensitivity towards topotecan compared with glioma cells. Astrocytes were generally resistant to vincristine. In cerebellar granule neurons, vincristine and to a lesser extent topotecan induced caspase 3 and caspase 9 cleavage, and enhanced caspase activity and Akt-dependent expression of phosphorylated BAD. zVAD-fmk, a caspase inhibitor and brain-derived neurotrophic factor (BDNF), but not MK-801, a non-competitive NMDA receptor antagonist, significantly reduced vincristine- or topotecan-induced cell death. 相似文献
8.
Introduction
Development of cell therapies for repairing the intervertebral disc is limited by the lack of a source of healthy human disc cells. Stem cells, particularly mesenchymal stem cells, are seen as a potential source but differentiation strategies are limited by the lack of specific markers that can distinguish disc cells from articular chondrocytes. 相似文献9.
Johannes Hirrlinger Anja Scheller Petra G. Hirrlinger Beate Kellert Wannan Tang Michael C. Wehr Sandra Goebbels Andreas Reichenbach Rolf Sprengel Moritz J. Rossner Frank Kirchhoff 《PloS one》2009,4(1)
Cre/LoxP recombination is the gold standard for conditional gene regulation in mice in vivo. However, promoters driving the expression of Cre recombinase are often active in a wide range of cell types and therefore unsuited to target more specific subsets of cells. To overcome this limitation, we designed inactive “split-Cre” fragments that regain Cre activity when overlapping co-expression is controlled by two different promoters. Using transgenic mice and virus-mediated expression of split-Cre, we show that efficient reporter gene activation is achieved in vivo. In the brain of transgenic mice, we genetically defined a subgroup of glial progenitor cells in which the Plp1- and the Gfap-promoter are simultaneously active, giving rise to both astrocytes and NG2-positive glia. Similarly, a subset of interneurons was labelled after viral transfection using Gad67- and Cck1 promoters to express split-Cre. Thus, split-Cre mediated genomic recombination constitutes a powerful spatial and temporal coincidence detector for in vivo targeting. 相似文献
10.
D Taruscio C Morciano P Laricchiuta P Mincarone F Palazzo CG Leo S Sabina R Guarino J Auld T Sejersen D Gavhed K Ritchie M Hilton-Boon J Manson PG Kanavos D Tordrup V Tzouma Y Le Cam J Senecat G Filippini S Minozzi C Del Giovane H Schünemann JJ Meerpohl B Prediger L Schell R Stefanov G Iskrov T Miteva-Katrandzhieva P Serrano-Aguilar L Perestelo-Perez MM Trujillo-Martín J Pérez-Ramos A Rivero-Santana A Brand H van Kranen K Bushby A Atalaia J Ramet L Siderius M Posada I Abaitua-Borda V Alonso Ferreira M Hens-Pérez FJ Manzanares 《Orphanet journal of rare diseases》2014,9(Z1):O14