首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   2篇
  166篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2016年   2篇
  2015年   2篇
  2014年   8篇
  2013年   8篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   10篇
  2005年   9篇
  2004年   7篇
  2003年   12篇
  2002年   17篇
  2001年   4篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1981年   2篇
  1973年   1篇
  1969年   1篇
排序方式: 共有166条查询结果,搜索用时 0 毫秒
1.
Summary IndnaK7(Ts) mutant cells, scission of DNA strands occurred after temperature shift up. When cells at 30°C were labeled with [3H]-thymidine and then shifted to 46° or 49°C for 20 min, the profiles of sedimentation of thier cellular DNA in an alkaline sucrose gradient revealed a decrease in the size of DNA to a quarter of that at 30°C in the mutant, but not in wild-type cells. The level of manganese-containing superoxide dismutase (MnSOD) in the mutant was about twice that in wild-type cells, even at the permissive temperature, implying increased production of superoxide radical anion, which may cleave DNA strands directly or indirectly in the mutant. Moderate increase in the MnSOD level on temperature shift up was observed in both strains. These results indicated that some components of the DnaK protein participate in protection of cellular membrane functions from thermal damage resulting from elevated production of the superoxide anion radical.  相似文献   
2.
An action spectrum for growth delay induced in Escherichia coli B/r by far-ultraviolet radiation (230 to 295 nm) was obtained. It resembles the action spectrum for killing obtained in the same experiments, indicating that the chromophore for growth delay is probably the same as the chromophore for killing. Another action spectrum for killing, obtained under conditions more suitable for chromophore identification, suggests that nucleic acid, either deoxyribonucleic acid or ribonucleic acid, is the chromophore for growth delay induced by far ultraviolet. Isoprenoid quinones, which seem to be important chromophores for growth delay induced by near-ultraviolet radiation (above 300 nm), appear to play a negligible role in growth delay induced by wavelengths below 300 nm.  相似文献   
3.
Eight restriction fragments (I–VIII) were prepared to cover a whole span of the enhancer region in the upstream of the Ars gene of the sea urchin, Hemicentrotus pulcherrimus , and their abilities to influence on the Ars gene expression were estimated by CAT assay. Only three fragments (III, IV and V) encompassing a 0.6 kb region between −2.8 kb and −2.2 kb stimulated CAT expression. By mobility shift assays, it was found that the Ars enhancer region is composed of multiple cis -acting elements that interact with nuclear proteins in a sequence-specific manner. Among them, two sequences, a G-string and a GATCTCCCC, were determined by DNA footprinting as sites of protein-DNA interaction. The DNA-binding factor prevalence changed ontogenically in three different patterns. Possible activation of DNA-binding proteins through their modification is discussed.  相似文献   
4.
5.
Rotenone, an inhibitor of NADH dehydrogenase complex, is a naturally occurring insecticide, which is capable of inducing apoptosis. Rotenone-induced apoptosis is considered to contribute to its anticancer effect and the etiology of Parkinson's disease (PD). We demonstrated that rotenone induced internucleosomal DNA fragmentation, DNA ladder formation, in human cultured cells, HL-60 (promyelocytic leukemia) and BJAB cells (B-cell lymphoma). Flow cytometry showed that rotenone induced H2O2 generation, followed by significant changes in the mitochondrial membrane potential (DeltaPsim). Caspase-3 activity increased in HL-60 cells in a time-dependent manner. These apoptotic events were delayed in HP100 cells, an H2O2-resistant clone of HL-60, confirming the involvement of H2O2 in apoptosis. Expression of anti-apoptotic protein, Bcl-2, in BJAB cells drastically inhibited DeltaPsim change and DNA ladder formation but not H2O2 generation, confirming the participation of mitochondrial dysfunction in apoptosis. NAD(P)H oxidase inhibitors prevented H2O2 generation and DNA ladder formation. These results suggest that rotenone induces O2(-)-derived H2O2 generation through inhibition of NADH dehydrogenase complex and/or activation of NAD(P)H oxidase, and H2O2 generation causes the disruption of mitochondrial membrane in rotenone-induced apoptosis.  相似文献   
6.
Procarbazine [N-isopropyl-alpha-(2-methylhydrazino)-p-toluamide], a hydrazine derivative, which has been shown to have effective antineoplastic activity, induces cancer in some experimental animals and humans. To clarify a new mechanism for its carcinogenic effect, we examined DNA damage induced by procarbazine in the presence of metal ion, using 32P-5'-end-labeled DNA fragments obtained from the human p53 tumor suppressor gene and the c-Ha-ras-1 protooncogene. Procarbazine plus Cu(II) induced piperidine-labile and formamidopyrimidine-DNA glycosylase-sensitive lesions at the 5'-ACG-3' sequence, complementary to a hotspot of the p53 gene, and the 5'-TG-3' sequence. Catalase partially inhibited DNA damage, suggesting that not only H(2)O(2) but also other reactive species are involved. Procarbazine plus Cu(II) significantly increased the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine, which was completely inhibited by calatase. Electron spin resonance spin-trapping experiments revealed that methyl radicals were generated from procarbazine and Cu(II). On the basis of these findings, it is considered that procarbazine causes DNA damage through non-enzymatic formation of the Cu(I)-hydroperoxo complex and methyl radicals. In conclusion, in addition to alkylation, oxidative DNA damage may play important roles in not only antitumor effects but also mutagenesis and carcinogenesis induced by procarbazine.  相似文献   
7.
In bacteria, guanosine (penta)tetra-phosphate ([p]ppGpp) is essential for controlling intracellular metabolism that is needed to adapt to environmental changes, such as amino acid starvation. The (p)ppGpp0 strain of Bacillus subtilis, which lacks (p)ppGpp synthetase, is unable to form colonies on minimal medium. Here, we found suppressor mutations in the (p)ppGpp0 strain, in the purine nucleotide biosynthesis genes, prs, purF and rpoB/C, which encode RNA polymerase core enzymes. In comparing our work with prior studies of ppGpp0 suppressors, we discovered that methionine addition masks the suppression on minimal medium, especially of rpoB/C mutations. Furthermore, methionine addition increases intracellular GTP in rpoB suppressor and this effect is decreased by inhibiting GTP biosynthesis, indicating that methionine addition activated GTP biosynthesis and inhibited growth under amino acid starvation conditions in (p)ppGpp0 backgrounds. Furthermore, we propose that the increase in intracellular GTP levels induced by methionine is due to methionine derivatives that increase the activity of the de novo GTP biosynthesis enzyme, GuaB. Our study sheds light on the potential relationship between GTP homeostasis and methionine metabolism, which may be the key to adapting to environmental changes.  相似文献   
8.
Hydrazobenzene is carcinogenic to rats and mice and azobenzene is carcinogenic to rats. Hydrazobenzene is a metabolic intermediate of azobenzene. To clarify the mechanism of carcinogenesis by azobenzene and hydrazobenzene, we investigated DNA damage induced by hydrazobenzene, using 32P-5′-end-labeled DNA fragments obtained from the c-Ha-ras-1 proto-oncogene and the p53 tumor suppressor gene. Hydrazobenzene caused DNA damage in the presence of Cu(II). Piperidine treatment enhanced the DNA damage greatly, suggesting that hydrazobenzene caused base modification and liberation. However, azobenzene did not cause DNA damage even in the presence of Cu(II). Hydrazobenzene plus Cu(II) caused DNA damage frequently at thymine residues. Catalase and a Cu(I)-specific chelator inhibited Cu(II)-mediated DNA damage by hydrazobenzene. Typical ·OH scavengers did not inhibit the DNA damage. The main active species is probably a metal oxygen complex, such as Cu(I)-OOH. Formation of 8-oxo-7, 8-dihydro-2′-deoxyguanosine was increased by hydrazobenzene in the presence of Cu(II). Oxygen consumption and UV-Visible spectroscopic measurements have shown that hydrazobenzene is autoxidized to azobenzene with H2O2 formation. It is considered that the metal-mediated DNA damage by hydrazobenzene through H2O2 generation may be relevant for the expression of carcinogenicity of azobenzene and hydrazobenzene.  相似文献   
9.
Guanosine triphosphate cyclohydrolase (EC 3.5.4.16) was previously shown to exist in two forms (GTP cyclohydrolase D-I and D-II) in Serratia indica IFO 3759, and they were homogeneously isolated. The present study deals with the characterization of their reaction products. A fluorescent product formed from guanosine triphosphate by GTP cyclohydrolase D-II was identified as 7,8-dihydroneopterin triphosphate by its absorption spectra, phosphate analysis and gas chromatography-mass spectrometry of the dephosphorylated trimethylsilyl derivative. After oxidation and dephosphorylation, the d-erythro configuration of the side chain was made clear by the elution profile on ECTEOLA-cellulose chromatography, Rf values on thin-layer chromatography and by biological activity to Crithidia fasciculata ATCC 12857. The fluorescent products from GTP cyclohydrolase D-I and D-II were indistinguishable.  相似文献   
10.
Carbonylation is an irreversible and irreparable protein modification induced by oxidative stress. Cholangiocarcinoma (CCA) is associated with chronic inflammation caused by liver fluke infection. To investigate the relationship between protein carbonylation and CCA progression, carbonylated proteins were detected by 2D OxyBlot and identified by MALDI-TOF/TOF analyses in pooled CCA tissues in comparison to adjacent nontumor tissues and normal liver tissues. We identified 14 highly carbonylated proteins in CCA tissues. Immunoprecipitation and Western blot analyses of individual samples confirmed significantly greater carbonylation of serotransferrin, heat shock protein 70-kDa protein 1 (HSP70.1), and α1-antitrypsin (A1AT) in tumor tissues compared to normal tissues. The oxidative modification of these proteins was significantly associated with poor prognoses as determined by the Kaplan-Meier method. LC-MALDI-TOF/TOF mass spectrometry identified R50, K327, and P357 as carbonylated sites in serotransferrin, HSP70.1, and A1AT, respectively. Moreover, iron accumulation was significantly higher in CCA tissues with, compared to those without, carbonylated serotransferrin. We conclude that carbonylated serotransferrin-associated iron accumulation may induce oxidative stress via the Fenton reaction, and the carbonylation of HSP70.1 with antioxidative property and A1AT with protease inhibitory capacity may cause them to become dysfunctional, leading to CCA progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号