首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   14篇
  103篇
  2023年   2篇
  2021年   3篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   5篇
  2008年   2篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
排序方式: 共有103条查询结果,搜索用时 0 毫秒
1.
Mitochondrial respiratory control in the myocardium   总被引:5,自引:0,他引:5  
The heart muscle has proved to be a practical model for studying respiratory control in intact tissues. It also demonstrates that control at the level of the respiratory chain is augmented by metabolic control at the substrate level as exemplified by the very narrow range of changes in the redox state of the mitochondrial NADH/NAD couple even during extensive changes in ATP and oxygen consumption. The behaviour of mitochondria when isolated can largely be duplicated in the intact myocardium. Moreover, the high intracellular concentrations of enzymes, coenzymes and adenine nucleotides create conditions of high reaction rates, enabling the formation of a near equilibrium network of certain main pathways. This equilibrium network in connection with metabolic regulation of the hydrogen pressure upon the matrix NADH/NAD pool is a prerequisite for the regulation of cellular respiration at a high efficiency of energy transfer. Experimentation on the intact myocardium also seems to be capable of resolving some of the uncertainties about prevailing mechanisms for the regulation of cellular respiration.  相似文献   
2.
1. The contribution of Co2 fixation to the anaplerotic mechanisms in the myocardium was investigated in isolated perfused rat hearts. 2. K+-induced arrest of the heart was used to elicit a transition in the concentrations of the intermediates of the tricarboxylic acid cycle. 3. Incorporation of 14C from [14]bicarbonate into tricarboxylic acid-cycle intermediates was measured and the rates of the reactions of the cycle were estimated by means of a linear optimization program which solves the differential equations describing a simulation model of the tricarboxylic acid cycle and related reactions. 4. The results showed that the rate of CO2 fixation is dependent on the metabolic state of the myocardium. Upon a sudden diminution of cellular ATP consumption, the pool size of the tricarboxylic acid-cycle metabolites increased and the rate of label incorporation from [14C]bicarbonate into the cycle metabolites increased simultaneously. The computer model was necessary to separate the rapid equilibration between bicarbonate and some metabolites from the potentially anaplerotic reactions. The main route of anaplerosis during metabolite accumulation was through malate + oxaloacetate. Under steady-state conditions there was a constant net outward flow from the tricarboxylic acid cycle via the malate + oxaloacetate pool, with a concomitant anaplerotic flow from metabolites forming succinyl-CoA (3-carboxypropionyl-CoA).  相似文献   
3.
The effect of clofibrate [ethyl 2-(4-chlorophenoxy)-2-methylpropionate] administered subcutaneously to rats (600 mg/kg per day for 7 days) on the hepatic concentrations of the citric acid cycle intermediates and malonyl-CoA was studied. The concentration of isocitrate increased by 40%, whereas that of oxaloacetate, succinyl-CoA and malate tended to decrease. No significant changes were found in the concentrations of 2-oxoglutarate, fumarate, succinate and citrate. A significant decrease in hepatic malonyl-CoA content was found. This reduction of malonyl-CoA may be the reason for the reported increase in hepatic fatty acid oxidation during clofibrate treatment.  相似文献   
4.
Seven of the 45 subunits of mitochondrial NADH:ubiquinone oxidoreductase (complex I) are mitochondrially encoded and have been shown to harbor pathogenic mutations. We modeled the human disease-associated mutations A4136G/ND1-Y277C, T4160C/ND1-L285P and C4171A/ND1-L289M in a highly conserved region of the fourth matrix-side loop of the ND1 subunit by mutating homologous amino acids and surrounding conserved residues of the NuoH subunit of Escherichia coli NDH-1. Deamino-NADH dehydrogenase activity, decylubiquinone reduction kinetics, hexammineruthenium (HAR) reductase activity, and the proton pumping efficiency of the enzyme were assayed in cytoplasmic membrane preparations.Among the human disease-associated mutations, a statistically significant 22% decrease in enzyme activity was observed in the NuoH-L289C mutant and a 29% decrease in the double mutant NuoH-L289C/V297P compared with controls. The adjacent mutations NuoH-D295A and NuoH-R293M caused 49% and 39% decreases in enzyme activity, respectively. None of the mutations studied significantly affected the Km value of the enzyme for decylubiquinone or the amount of membrane-associated NDH-1 as estimated from the HAR reductase activity. In spite of the decrease in enzyme activity, all the mutant strains were able to grow on malate, which necessitates sufficient NDH-1 activity. The results show that in ND1/NuoH its fourth matrix-side loop is probably not directly involved in ubiquinone binding or proton pumping but has a role in modifying enzyme activity.  相似文献   
5.
Several populations with different metal tolerance, uptake and root-to-shoot transport are known for the metal hyperaccumulator plant Thlaspi caerulescens. In this study, genes differentially expressed under various Zn exposures were identified from the shoots of two T. caerulescens accessions (calaminous and non-calaminous) using fluorescent differential display RT-PCR. cDNA fragments from 16 Zn-responsive genes, including those encoding metallothionein (MT) type 2 and type 3, MRP-like transporter, pectin methylesterase (PME) and Ole e 1-like gene as well as several unknown genes, were eventually isolated. The full-length MT2 and MT3 sequences differ from those previously isolated from other Thlaspi accessions, possibly representing new alleles or isoforms. Besides the differential expression in Zn exposures, the gene expression was dependent on the accession. Thlaspi homologues of ClpP protease and MRP transporter were induced at high Zn concentrations. MT2 and PME were expressed at higher levels in the calaminous accession. The MTs and MRP transporter expressed in transgenic yeasts were capable of conferring Cu and Cd tolerance, whereas the Ole e 1-like gene enhanced toxicity to these metals. The MTs increased yeast intracellular Cd content. As no significant differences were found between Arabidopsis and Thlaspi MTs, they apparently do not differ in their capacity to bind metals. However, the higher levels of MT2 in the calaminous accession may contribute to the Zn-adapted phenotype.  相似文献   
6.
7.
The chemiluminescent superoxide indicators lucigenin and coelenterazine were compared in rat liver submitochondrial particles and cytoplasmic membranes from Paracoccus denitrificans. Qualitative monitoring is possible with both probes, but quantitative work with lucigenin is hampered by its dependence on one-electron reduction before the photon-emitting reaction. Therefore, calibration of measurements on complex I, capable of efficient lucigenin prereduction with reduced nicotinamide adenine dinucleotide, against xanthine oxidase, which in the presence of hypoxanthine is not able to reduce the probe to a significant rate compared to complex I, may give results in error by one order of magnitude. Coelenterazine, although susceptible of storage-dependent high background chemiluminescence, does not require prereduction and is thus a more reliable probe.  相似文献   
8.
While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein 1H chemical shifts in which molecular motions, the 4th dimension, were modeled using molecular dynamics (MD) simulations. Although the approach clearly improved the prediction, the X-ray structures and single NMR conformers used in the model cannot be considered fully realistic models of protein in solution. In this work, NMR ensembles (NMRE) were used to expand the conformational space of proteins (e.g. side chains, flexible loops, termini), followed by MD simulations for each conformer to map the local fluctuations. Compared with the non-dynamic model, the NMRE+MD model gave 6–17% lower root-mean-square (RMS) errors for different backbone nuclei. The improved prediction indicates that NMR ensembles with MD simulations can be used to obtain a more realistic picture of protein structures in solutions and moreover underlines the importance of short and long time-scale dynamics for the prediction. The RMS errors of the NMRE+MD model were 0.24, 0.43, 0.98, 1.03, 1.16 and 2.39 ppm for 1Hα, 1HN, 13Cα, 13Cβ, 13CO and backbone 15N chemical shifts, respectively. The model is implemented in the prediction program 4DSPOT, available at .  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号