首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   11篇
  125篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   4篇
  2011年   9篇
  2010年   7篇
  2009年   5篇
  2008年   2篇
  2007年   6篇
  2006年   5篇
  2005年   6篇
  2004年   1篇
  2003年   4篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1982年   1篇
  1978年   1篇
  1977年   3篇
  1974年   1篇
  1958年   1篇
排序方式: 共有125条查询结果,搜索用时 0 毫秒
1.
We compared male-reproductive-tract polypeptides of Drosophila melanogaster and D. simulans by using two-dimensional gel electrophoresis. Approximately 64% of male-reproductive-tract polypeptides were identical between two randomly chosen isofemale lines from these two species, compared with 83% identity for third-instar imaginal wing-disc polypeptides. Qualitatively similar differences were found between reproductive tracts and imaginal discs when D. sechellia was compared with D. melanogaster and with D. simulans. When genic polymorphism was taken into account, approximately 10% of male- reproductive-tract polypeptides were apparently fixed for different alleles between D. melanogaster and D. simulans; this proportion is the same as that found for soluble enzymes by one-dimensional gel electrophoresis. Strikingly, approximately 20% of male-reproductive- tract polypeptides of either D. melanogaster or D. simulans had no detectable homologue in the other species. We propose that proteins of the Drosophila male reproductive tract may have diverged more extensively between species than have other types of proteins and that much of this divergence may involve large changes in levels of polypeptide expression.   相似文献   
2.
The parameters of the reaction between a rat alveolar macrophage lectin (Mr = 180,000) and its ligands have been examined. The reaction is dependent on Ca2+ over the optimal pH range for binding. The apparent dissociation constant for fucosyl bovine serum albumin, the standard ligand used in these studies, is 1.4 X 10(-10) M. The ligand binding specificity was determined by measurement of the inhibition of binding of fucosyl bovine serum albumin by various glycoproteins and saccharides. D-Mannose, L-fucose, and N-acetyl-D-glucosamine were the most effective inhibitors, and D-galactose was much poorer. The equatorial hydroxyl groups on the C-3 and C-4 of the mannose ring are important in the lectin-ligand interaction, and the axial hydroxyl group on the C-2 contributes to a lesser extent. Immunocytological studies revealed that the lectin isolated from alveolar macrophages is widely distributed in other rat tissues. Hepatocytes are devoid of the lectin, but hepatic Kupffer cells and endothelial cells contain significant amounts. This was confirmed by isolation of the lectin from liver. Spleen and skeletal muscle also contain lectin, but much smaller amounts were found in brain, kidney, and heart muscle.  相似文献   
3.
Summary Continuing a line of investigations on methods for formation and growth of high-quality crystals of peptides, the glycylglycine sequence has been crystallized by evaporation methods as a salt with 1,5-naphthalenedisulfonic acid. The structure of the peptide is highly extended, and is conformationally quite similar to the structures which have been characterized for other zwitterionic and salt forms of this sequence. Thus, crystallization as a salt with this sulfonic acid has imposed no undue influence upon the molecular conformation. These results offer further indication that the preparation of peptide sulfonate salts, particularly with arene templates, may have broad general utility for crystallization of interesting sequences which until now have not been approachable in their zwitterionic forms.  相似文献   
4.
During studies on the fucosylation of endogenous proteins inparental (Pro5) and N-acetyl-D-glucosamine (GlcNAc) transferaseI-deficient (Lec1) Chinese hamster ovary (CHO) cells, we observedthat Lec1 cells incorporate  相似文献   
5.
An assay for the enzyme responsible for the addition of O-linked N-acetylglucosamine (O-GlcNAc) to proteins, a UDP-N-acetylglucosamine:peptide N-acetylglucosaminyltransferase, is reported using the synthetic peptide YSDSPSTST as the acceptor substrate. The activity is linearly dependent on time, enzyme, and substrate concentration. Replacement of the proline with a glycine in the peptide renders it ineffective as a substrate, whereas changing of the aspartic acid to a glycine has no effect. Product characterization of the glycosylated peptide demonstrates that the monosaccharide covalently attached to the peptide is N-acetylglucosamine (GlcNAc) and has not been epimerized to N-acetylgalactosamine. Mild base-catalyzed beta-elimination of the in vitro glycosylated peptide quantitatively yields GlcNAcitol, indicating that the GlcNAc is attached via an O-linkage. The transferase activity is strongly inhibited by UDP but is unaffected by GlcNAc or tunicamycin. Interestingly, EDTA only slightly inhibits activity, suggesting that the enzyme may not require divalent cations. The majority of the activity is soluble, and the remainder is lost from membranes after extracting with high salt and EDTA. Consistent with the subcellular localization of most proteins bearing O-GlcNAc, the activity appears to reside in the cytosolic portion of the cell when compared to two lumenal marker enzymes, galactosyltransferase and mannose-6-phosphatase.  相似文献   
6.
The Notch signaling pathway controls a large number of processes during animal development and adult homeostasis. One of the conserved post-translational modifications of the Notch receptors is the addition of an O-linked glucose to epidermal growth factor-like (EGF) repeats with a C-X-S-X-(P/A)-C motif by Protein O-glucosyltransferase 1 (POGLUT1; Rumi in Drosophila). Genetic experiments in flies and mice, and in vivo structure-function analysis in flies indicate that O-glucose residues promote Notch signaling. The O-glucose residues on mammalian Notch1 and Notch2 proteins are efficiently extended by the addition of one or two xylose residues through the function of specific mammalian xylosyltransferases. However, the contribution of xylosylation to Notch signaling is not known. Here, we identify the Drosophila enzyme Shams responsible for the addition of xylose to O-glucose on EGF repeats. Surprisingly, loss- and gain-of-function experiments strongly suggest that xylose negatively regulates Notch signaling, opposite to the role played by glucose residues. Mass spectrometric analysis of Drosophila Notch indicates that addition of xylose to O-glucosylated Notch EGF repeats is limited to EGF14–20. A Notch transgene with mutations in the O-glucosylation sites of Notch EGF16–20 recapitulates the shams loss-of-function phenotypes, and suppresses the phenotypes caused by the overexpression of human xylosyltransferases. Antibody staining in animals with decreased Notch xylosylation indicates that xylose residues on EGF16–20 negatively regulate the surface expression of the Notch receptor. Our studies uncover a specific role for xylose in the regulation of the Drosophila Notch signaling, and suggest a previously unrecognized regulatory role for EGF16–20 of Notch.  相似文献   
7.
ADAMTS13 is a plasma metalloproteinase that cleaves von Willebrand factor to smaller, less thrombogenic forms. Deficiency of ADAMTS13 activity in plasma leads to thrombotic thrombocytopenic purpura. ADAMTS13 contains eight thrombospondin type 1 repeats (TSR), seven of which contain a consensus sequence for the direct addition of fucose to the hydroxyl group of serine or threonine. Mass spectral analysis of tryptic peptides derived from human ADAMTS13 indicate that at least six of the TSRs are modified with an O-fucose disaccharide. Analysis of [(3)H]fucose metabolically incorporated into ADAMTS13 demonstrated that the disaccharide has the structure glucose-beta1,3-fucose. Mutation of the modified serine to alanine in TSR2, TSR5, TSR7, and TSR8 reduced the secretion of ADAMTS13. Mutation of more than one site dramatically reduced secretion regardless of the sites mutated. When the expression of protein O-fucosyltransferase 2 (POFUT2), the enzyme that transfers fucose to serines in TSRs, was reduced using siRNA, the secretion of ADAMTS13 decreased. A similar outcome was observed when ADAMTS13 was expressed in a cell line unable to synthesize the donor for fucose addition, GDP-fucose. Although overexpression of POFUT2 did not affect the secretion of wild-type ADAMTS13, it did increase the secretion of the ADAMTS13 TSR1,2 double mutant but not that of ADAMTS13 TSR1-8 mutant. Together these findings indicate that O-fucosylation is functionally significant for secretion of ADAMTS13.  相似文献   
8.
The protein O-glucosyltransferase Rumi/POGLUT1 regulates Drosophila Notch signaling by adding O-glucose residues to the Notch extracellular domain. Rumi has other predicted targets including Crumbs (Crb) and Eyes shut (Eys), both of which are involved in photoreceptor development. However, whether Rumi is required for the function of Crb and Eys remains unknown. Here we report that in the absence of Rumi or its enzymatic activity, several rhabdomeres in each ommatidium fail to separate from one another in a Notch-independent manner. Mass spectral analysis indicates the presence of O-glucose on Crb and Eys. However, mutating all O-glucosylation sites in a crb knock-in allele does not cause rhabdomere attachment, ruling out Crb as a biologically-relevant Rumi target in this process. In contrast, eys and rumi exhibit a dosage-sensitive genetic interaction. In addition, although in wild-type ommatidia most of the Eys protein is found in the inter-rhabdomeral space (IRS), in rumi mutants a significant fraction of Eys remains in the photoreceptor cells. The intracellular accumulation of Eys and the IRS defect worsen in rumi mutants raised at a higher temperature, and are accompanied by a ∼50% decrease in the total level of Eys. Moreover, removing one copy of an endoplasmic reticulum chaperone enhances the rhabdomere attachment in rumi mutant animals. Altogether, our data suggest that O-glucosylation of Eys by Rumi ensures rhabdomere separation by promoting proper Eys folding and stability in a critical time window during the mid-pupal stage. Human EYS, which is mutated in patients with autosomal recessive retinitis pigmentosa, also harbors multiple Rumi target sites. Therefore, the role of O-glucose in regulating Eys may be conserved.  相似文献   
9.
Patients with systemic autoimmune diseases usually produce high levels of antibodies to self-antigens (autoantigens). The repertoire of common autoantigens is remarkably limited, yet no readily understandable shared thread links these apparently diverse proteins. Using computer prediction algorithms, we have found that most nuclear systemic autoantigens are predicted to contain long regions of extreme structural disorder. Such disordered regions would generally make poor B cell epitopes and are predicted to be under-represented as potential T cell epitopes. Consideration of the potential role of protein disorder may give novel insights into the possible role of molecular mimicry in the pathogenesis of autoimmunity. The recognition of extreme autoantigen protein disorder has led us to an explicit model of epitope spreading that explains many of the paradoxical aspects of autoimmunity – in particular, the difficulty in identifying autoantigen-specific helper T cells that might collaborate with the B cells activated in systemic autoimmunity. The model also explains the experimentally observed breakdown of major histocompatibility complex (MHC) class specificity in peptides associated with the MHC II proteins of activated autoimmune B cells, and sheds light on the selection of particular T cell epitopes in autoimmunity. Finally, the model helps to rationalize the relative rarity of clinically significant autoimmunity despite the prevalence of low specificity/low avidity autoantibodies in normal individuals.  相似文献   
10.
The development of new therapeutic strategies is necessary to reduce the worldwide social and economic impact of cardiovascular disease, which produces high rates of morbidity and mortality. A therapeutic option that has emerged in the last decade is cell therapy. The aim of this study was to compare the effect of transplanting human umbilical cord-derived stromal cells (UCSCs), human umbilical cord blood-derived endothelial cells (UCBECs) or a combination of these two cell types for the treatment of ischemic cardiomyopathy (IC) in a Wistar rat model. IC was induced by left coronary artery ligation, and baseline echocardiography was performed seven days later. Animals with a left ventricular ejection fraction (LVEF) of ≤40% were selected for the study. On the ninth day after IC was induced, the animals were randomized into the following experimental groups: UCSCs, UCBECs, UCSCs plus UCBECs, or vehicle (control). Thirty days after treatment, an echocardiographic analysis was performed, followed by euthanasia. The animals in all of the cell therapy groups, regardless of the cell type transplanted, had less collagen deposition in their heart tissue and demonstrated a significant improvement in myocardial function after IC. Furthermore, there was a trend of increasing numbers of blood vessels in the infarcted area. The median value of LVEF increased by 7.19% to 11.77%, whereas the control group decreased by 0.24%. These results suggest that UCSCs and UCBECs are promising cells for cellular cardiomyoplasty and can be an effective therapy for improving cardiac function following IC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号