首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   9篇
  138篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   8篇
  2012年   6篇
  2011年   3篇
  2010年   5篇
  2009年   11篇
  2008年   9篇
  2007年   3篇
  2006年   9篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   5篇
  2001年   8篇
  2000年   1篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1975年   1篇
  1974年   1篇
  1962年   1篇
  1954年   2篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
1.
This work describes the long-term acclimation of the halotolerant microalga Dunaliella viridis to different photon irradiance, ranging from darkness to 1500 μmol m−2 s−1. In order to assess the effects of long-term photoinhibition, changes in oxygen production rate, pigment composition, xanthophyll cycle and in vivo chlorophyll fluorescence using the saturating pulse method were measured. Growth rate was maximal at intermediate irradiance (250 and 700 μmol m−2 s−1). The increase in growth irradiance from 700 to 1500 μmol m−2 s−1 did not lead to further significant changes in pigment composition or EPS, indicating saturation in the pigment response to high light. Changes in Photosystem II optimum quantum yield (Fv/Fm) evidenced photoinhibition at 700 and especially at 1500 μmol m−2 s−1. The relation between photosynthetic electron flow rate and photosyntetic O2 evolution was linear for cultures in darkness shifting to curvilinear as growth irradiance increased, suggesting the interference of the energy dissipation processes in oxygen evolution. Carbon assimilation efficiencies were studied in relation to changes in growth rate, internal carbon and nitrogen composition, and organic carbon released to the external medium. All illuminated cultures showed a high capability to maintain a C:N ratio between 6 and 7. The percentage of organic carbon released to the external medium increased to its maximum under high irradiance (1500 μmol m−2 s−1). These results suggest that the release of organic carbon could act as a secondary dissipation process when the xanthophyll cycle is saturated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
2.
Biotic and abiotic factors may individually or interactively disrupt plant–pollinator interactions, influencing plant fitness. Although variations in temperature and precipitation are expected to modify the overall impact of predators on plant–pollinator interactions, few empirical studies have assessed if these weather conditions influence anti-predator behaviors and how this context-dependent response may cascade down to plant fitness. To answer this question, we manipulated predation risk (using artificial spiders) in different years to investigate how natural variation in temperature and precipitation may affect diversity (richness and composition) and behavioral (visitation) responses of flower-visiting insects to predation risk, and how these effects influence plant fitness. Our findings indicate that predation risk and an increase in precipitation independently reduced plant fitness (i.e., seed set) by decreasing flower visitation. Predation risk reduced pollinator visitation and richness, and altered species composition of pollinators. Additionally, an increase in precipitation was associated with lower flower visitation and pollinator richness but did not alter pollinator species composition. However, maximum daily temperature did not affect any component of the pollinator assemblage or plant fitness. Our results indicate that biotic and abiotic drivers have different impacts on pollinator behavior and diversity with consequences for plant fitness components. Even small variation in precipitation conditions promotes complex and substantial cascading effects on plants by affecting both pollinator communities and the outcome of plant–pollinator interactions. Tropical communities are expected to be highly susceptible to climatic changes, and these changes may have drastic consequences for biotic interactions in the tropics.  相似文献   
3.
A survey was conducted to determine the levels of fumonisins B1 and B2 in corn and corn-based products available in Colombia for human and animal consumption. A total of 120 samples were analyzed by acetonitrile-water extraction, cleanup with a strong-anion-exchange column, and liquid chromatography with o-phthaldialdehyde-2-mercaptoethanol derivatization and fluorescence detection. The samples of corn and corn-based products for animal intake were taken at different feed manufacturing plants, whereas the samples used for human foods where purchased from local retail stores. The number of positive samples for fumonisin B1 was 20.0% higher in corn and corn-based products for animal intake (75.0%) than in corn and corn-based products for human consumption (55.0%). The levels of fumonisin B1 were also higher in corn and corn-based products for animal intake (mean = 694 μg/kg; range = 32–2964 μg/kg), than in corn and corn-based products for human intake (mean = 218 μg/kg; range = 24–2170 μg/ kg). The incidence and levels of fumonisin B2 were lower than those for fumonisin B1. Corn and corn-based products for animal consumption had an incidence of fumonisin B2 of 58.3%, with a mean value of 283 μg/kg, and a range of 44–987 μg/kg. The incidence of fumonisin B2 in corn-based products for human intake was 35.0%, with a mean value of 118 μg/kg and a range of 21–833 μg/kg. The highest incidence and levels of fumonisins were found in samples of hominy feed, with concentrations ranging from 86 to 2964 μg/kg fumonisin B1 and 57 to 987 μg/kg fumonisin B2.  相似文献   
4.
The consequences of the addition of CO2 (1%) in cultures of S. platensis are examined in terms of biomass yield, cell composition and external medium composition. CO2 enrichment was tested under nitrogen saturating and nitrogen limiting conditions. Increasing CO2 levels did not cause any change in maximum growth rate while it decreased maximum biomass yield. Protein and pigments were decreased and carbohydrate increased by high CO2, but the capability to store carbohydrates was saturated. C:N ratio remained unchanged while organic carbon released to the external medium was enhanced, suggesting that organic carbon release in S. platensis is an efficient mechanism for the maintenance of the metabolic integrity, balancing the cell C:N ratio in response to environmental CO2 changes. CO2 affected the pigment content: Phycocyanin, chlorophyll and carotenoids were reduced in around 50%, but the photosynthetic parameters were slightly changed. We propose that in S. platensis CO2 could act promoting degradation of pigments synthetised in excess in normal CO2 conditions, that are not necessary for light harvesting. Nitrogen assimilation was significantly not affected by CO2, and it is proposed that the inability to stimulate N assimilation by CO2 enrichment determined the lack of response in maximum growth rate. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
5.
6.
7.
8.

Background  

Nervous tissues express various communication molecules including natriuretic peptides, i.e. Brain Natriuretic Peptide (BNP) and C-type Natriuretic Peptide (CNP). These molecules share structural similarities with cyclic antibacterial peptides. CNP and to a lesser extent BNP can modify the cytotoxicity of the opportunistic pathogen Pseudomonas aeruginosa. The psychrotrophic environmental species Pseudomonas fluorescens also binds to and kills neurons and glial cells, cell types that both produce natriuretic peptides. In the present study, we investigated the sensitivity of Pseudomonas fluorescens to natriuretic peptides and evaluated the distribution and variability of putative natriuretic peptide-dependent sensor systems in the Pseudomonas genus.  相似文献   
9.

Background  

Pseudomonas fluorescens is a ubiquitous Gram-negative bacterium frequently encountered in hospitals as a contaminant of injectable material and surfaces. This psychrotrophic bacterium, commonly described as unable to grow at temperatures above 32°C, is now considered non pathogenic. We studied a recently identified clinical strain of P. fluorescens biovar I, MFN1032, which is considered to cause human lung infection and can grow at 37°C in laboratory conditions.  相似文献   
10.
Social bee colonies can allocate their foraging resources over a large spatial scale, but how they allocate foraging on a small scale near the colony is unclear and can have implications for understanding colony decision‐making and the pollination services provided. Using a mass‐foraging stingless bee, Scaptotrigona pectoralis (Dalla Torre) (Hymenoptera: Apidae: Meliponini), we show that colonies will forage near their nests and allocate their foraging labor on a very fine spatial scale at an array of food sources placed close to the colony. We counted the foragers that a colony allocated to each of nine feeders containing 1.0, 1.5, or 2.0 M sucrose solution [31, 43, and 55% sucrose (wt/wt), respectively] at distances of 10, 15, and 20 m from the nest. A significantly greater number of foragers (2.6–5.3 fold greater) visited feeders placed 10 vs. 20 m away from the colony. Foraging allocation also corresponded to food quality. At the 10‐m feeders, 4.9‐fold more foragers visited 2.0 M as compared to 1.0 M sucrose feeders. Colony forager allocation thus responded to both differences in food distance and quality even when the travel cost was negligible compared to normal colony foraging distances (10 m vs. an estimated 800–1 710 m). For a nearby floral patch, this could result in unequal floral visitation and pollination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号