首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   1篇
  2021年   2篇
  2018年   1篇
  2015年   1篇
  2014年   5篇
  2013年   3篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2008年   8篇
  2007年   3篇
  2006年   8篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  1998年   2篇
  1968年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
1.
2.
Hedgehog signaling is required for multiple aspects of brain development, including growth, the establishment of both dorsal and ventral midline patterning and the generation of specific cell types such as oligodendrocytes and interneurons. To identify more precisely when during development hedgehog signaling mediates these events, we directed the removal of hedgehog signaling within the brain by embryonic day 9 of development, using a FoxG1(Cre) driver line to mediate the removal of a conditional smoothened null allele. We observed a loss of ventral telencephalic patterning that appears to result from an initial lack of specification of these structures rather than by changes in proliferation or cell death. A further consequence of the removal of smoothened in these mice is the near absence of both oligodendrocytes and interneurons. Surprisingly, the dorsal midline appears to be patterned normally in these mutants. Together with previous analyses, the present results demonstrate that hedgehog signaling in the period between E9.0 and E12 is essential for the patterning of ventral regions and the generation of cell types that are thought to largely arise from them.  相似文献   
3.
4.
5.
A key obstacle to understanding neural circuits in the?cerebral cortex is that of unraveling the diversity of GABAergic interneurons. This diversity poses general questions for neural circuit analysis: how are these interneuron cell types generated and assembled into stereotyped local circuits and how do they differentially contribute to circuit operations that underlie cortical functions ranging from perception to cognition? Using genetic engineering in mice, we have generated and characterized approximately 20 Cre and inducible CreER knockin driver lines that reliably target major classes and lineages of GABAergic neurons. More select populations are captured by intersection of Cre and Flp drivers. Genetic targeting allows reliable identification, monitoring, and manipulation of cortical GABAergic neurons, thereby enabling a systematic and comprehensive analysis from cell fate specification, migration, and connectivity, to their functions in network dynamics and behavior. As such, this approach will accelerate the study of GABAergic circuits throughout the mammalian brain.  相似文献   
6.
7.
8.
Numerous lines of evidence suggest that Notch signaling plays a pivotal role in controlling the production of neurons from progenitor cells. However, most experiments have relied on gain-of-function approaches because perturbation of Notch signaling results in death prior to the onset of neurogenesis. Here, we examine the requirement for Notch signaling in the development of the striatum through the analysis of different single and compound Notch1 conditional and Notch3 null mutants. We find that normal development of the striatum depends on the presence of appropriate Notch signals in progenitors during a critical window of embryonic development. Early removal of Notch1 prior to neurogenesis alters early-born patch neurons but not late-born matrix neurons in the striatum. We further show that the late-born striatal neurons in these mutants are spared as a result of functional compensation by Notch3. Notably, however, the removal of Notch signaling subsequent to cells leaving the germinal zone has no obvious effect on striatal organization and patterning. These results indicate that Notch signaling is required in neural progenitor cells to control cell fate in the striatum, but is dispensable during subsequent phases of neuronal migration and differentiation.  相似文献   
9.
A novel conjugate of human hemoglobin (Hb) and the nucleoside analogue ribavirin (RBV) was synthesized to demonstrate the utility of Hb as a biocompatible drug carrier for improved drug delivery in the treatment of liver disease. RBV is used in combination with interferon for the treatment of hepatitis C, but its side effects can result in dose limitation or discontinuation of treatment. Targeted delivery of RBV may help to prevent or minimize its toxicity. The hemoglobin-ribavirin conjugate (Hb-RBV) was designed to release bioactive drug upon endocytosis by cells and tissues involved in extracellular Hb catabolism and clearance. Ribavirin-5'-monophosphate (RBV-P) was prepared from RBV and activated as the 5'-monophosphorimidazolide (RBV-P-Im) for reaction with carbonmonoxyhemoglobin to yield Hb-RBV consisting of multiple RBV drugs covalently attached as physiologically labile phosphoramidates via their 5'-hydroxyl groups. A molar drug ratio of six to eight RBV molecules per Hb tetramer was obtained with near complete haptoglobin (Hp) binding of the drug modified Hb maintained. The conjugate complex (Hp-Hb-RBV) was selectively taken up in vitro by cells that express the hemoglobin-haptoglobin receptor, CD163. Recovered ribavirin enzymatically cleaved from Hb-RBV showed equipotent antiproliferative activity compared to control unconjugated RBV against human HepG2 and mouse AML12 liver cell lines. Based upon the reported high level of Hb uptake in the liver, Hb-RBV may be useful in the treatment of certain liver diseases, as well as inflammatory disorders associated with CD163-positive macrophages.  相似文献   
10.
Sonic hedgehog has received an enormous amount of attention since its role as a morphogen that directs ventral patterning in the spinal cord was discovered a decade ago. Since that time, a bewildering array of information has been generated concerning both the components of the hedgehog signalling pathway and the remarkable number of contexts in which it functions. Nowhere is this more evident than in the nervous system, where hedgehog signalling has been implicated in events as disparate as axonal guidance and stem cell maintenance. Here we review our present knowledge of the hedgehog signalling pathway and speculate about areas in which further insights into this versatile pathway might be forthcoming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号