全文获取类型
收费全文 | 44篇 |
免费 | 8篇 |
专业分类
52篇 |
出版年
2024年 | 2篇 |
2021年 | 2篇 |
2020年 | 1篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2015年 | 2篇 |
2014年 | 3篇 |
2012年 | 2篇 |
2011年 | 2篇 |
2009年 | 1篇 |
2008年 | 1篇 |
2007年 | 3篇 |
2005年 | 1篇 |
2004年 | 2篇 |
1999年 | 5篇 |
1998年 | 3篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1972年 | 2篇 |
1970年 | 1篇 |
1969年 | 2篇 |
1968年 | 1篇 |
1967年 | 2篇 |
1966年 | 2篇 |
1957年 | 1篇 |
排序方式: 共有52条查询结果,搜索用时 0 毫秒
1.
Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis 总被引:1,自引:0,他引:1
Soper SF van der Heijden GW Hardiman TC Goodheart M Martin SL de Boer P Bortvin A 《Developmental cell》2008,15(2):285-297
Tight control of transposon activity is essential for the integrity of the germline. Recently, a germ-cell-specific organelle, nuage, was proposed to play a role in transposon repression. To test this hypothesis, we disrupted a murine homolog of a Drosophila nuage protein Maelstrom. Effects on male meiotic chromosome synapsis and derepression of transposable elements (TEs) were observed. In the adult Mael(-/-) testes, LINE-1 (L1) derepression occurred at the onset of meiosis. As a result, Mael(-/-) spermatocytes were flooded with L1 ribonucleoproteins (RNPs) that accumulated in large cytoplasmic enclaves and nuclei. Mael(-/-) spermatocytes with nuclear L1 RNPs exhibited massive DNA damage and severe chromosome asynapsis even in the absence of SPO11-generated meiotic double-strand breaks. This study demonstrates that MAEL, a nuage component, is indispensable for the silencing of TEs and identifies the initiation of meiosis as an important step in TE control in the male germline. 相似文献
2.
Human adenoviruses: tumor production in hamsters by type 12 and 18 grown from single plaques 总被引:5,自引:0,他引:5
3.
Zhiping Zhang Xiaoming Liu Tao Wu Junhong Liu Xu Zhang Xueyun Yang Michael J. Goodheart John F. Engelhardt Yujiong Wang 《Cell biology and toxicology》2011,27(2):107-121
Lycium barbarum fruit has been used as a Chinese traditional medicine and dietary supplement for centuries. 2-O-β-d-Glucopyranosyl-l-ascorbic acid (AA-2βG), a novel stable vitamin C analog, is one of the main biologically active components of the fruit. In this report, we investigated the cytotoxic and antiproliferative effect of AA-2βG against cancer cells in vitro and identified the proteins with significantly differential expression in the cervical cancer cells (Hela) cultured in the presence of AA-2βG proteomic analysis. Our results demonstrated that the cytotoxic and antiproliferative activity of AA-2βG on cancer cell lines were in a cell type-, time-, and dose-dependent manner. Similar to vitamin C, the AA-2βG selectively induced cell death repressed the proliferation of Hela cells by the mechanism of cell apoptosis and cell cycle arrest induced by AA-2βG through a mechanism of stabilizing p53 protein. However, the biological activity of inhibition of cell proliferation in other malignant cancer cell lines or primary cells were varied, as demonstrated by either moderate inhibition or slight promotion following treatment with AA-2βG. Comparative analysis of the proteomic profiles and immunoblot analysis identified 15 proteins associated with repressing cell apoptosis and/or stimulating cell proliferation in Hela cells that were downregulated in the presence of AA-2βG or vitamin C. These data indicate that a mechanism of the AA-2βG and vitamin C mediated antitumor activity by downregulating the expression of proteins involved in cell apoptosis and proliferation and consequently inducing Hela cell apoptosis and cell cycle arrest, suggesting that AA-2βG and vitamin C may share a similar mechanism of inducing Hela cell apoptosis. These results also suggest that the L. barbarum fruit may be a potential dietary supplement and anticancer agent aimed at the prevention and treatment of cervical cancer. 相似文献
4.
5.
6.
Ben Goodheart;Scott Creel;Paul Schuette;Egil Droge;Justine A. Becker;Kambwiri Banda;Anna Kusler;Stephi Matsushima;Kachama Banda;Ruth Kabwe;Will Donald;Johnathan Reyes de Merkle;Adrian Kaluka;Clive Chifunte;Matthew S. Becker; 《Ecology and evolution》2024,14(10):e70401
Prey depletion threatens many carnivore species across the world and can especially threaten low-density subordinate competitors, particularly if subordinates are limited to low densities by their dominant competitors. Understanding the mechanisms that drive responses of carnivore density to prey depletion is not only crucial for conservation but also elucidates the balance between top-down and bottom-up limitations within the large carnivore guild. To avoid predation, competitively subordinate African wild dogs typically avoid their dominant competitors (lions) and the prey rich areas they are associated with, but no prior research has tested whether this pattern persists in ecosystems with anthropogenically-reduced prey density, and reduced lion density as a result. We used spatial data from wild dogs and lions in the prey-depleted Greater Kafue Ecosystem to test if wild dogs continue to avoid lions (despite their low density), and consequently avoid habitats with higher densities of their dominant prey species. We found that although lion density is 3X lower than comparable ecosystems, wild dogs continue to strongly avoid lions, and consequently avoid habitats associated with their two most important prey species. Although the density of lions in the GKE is low due to prey depletion, their competitive effects on wild dogs remain strong. These effects are likely compounded by prey-base homogenization, as lions in the GKE now rely heavily on the same prey preferred by wild dogs. These results suggest that a reduction in lion density does not necessarily reduce competition, and helps explain why wild dogs decline in parallel with their dominant competitors in ecosystems suffering from anthropogenic prey depletion. Protecting prey populations within the few remaining strongholds for wild dogs is vitally important to avoid substantial population declines. Globally, understanding the impacts of prey depletion on carnivore guild dynamics should be an increasingly important area of focus for conservation. 相似文献
7.
C. R. Goodheart G. R. Armstrong D. V. Ablashi G. Pearson T. W. Orr 《Applied microbiology》1974,27(5):988-990
Oncogenic herpesviruses, like many other viruses, can be concentrated effectively from large volumes of culture fluids by precipitation with methanol with good recovery of infectivity. 相似文献
8.
Cultured bovine capillary endothelial (BCE) cells produce low levels of collagenolytic activity and significant amounts of the serine protease plasminogen activator (PA). When grown in the presence of nanomolar quantities of the tumor promoter 12-O-tetradecanoyl phorbol-13-acetate (TPA), BCE cells produced 5-15 times more collagenolytic activity and 2-10 times more PA than untreated cells. The enhanced production of these enzymes was dependent on the dose of TPA used, with maximal response at 10(-7) to 10(-8) M. Phorbol didecanoate (PDD), an analog of TPA which is an active tumor promoter, also increased protease production. 4-O-methyl-TPA and 4α-PDD, two analogs of TPA which are inactive as tumor promoters, had no effect on protease production. Increased PA and collagenase activities were detected within 7.5 and 19 h, respectively, after the addition of TPA. The TPA-stimulated BCE cells synthesized a urokinase-type PA and a typical vertebrate collagenase. BCE cells were compared with bovine aortic endothelial (BAE) cells and bovine embryonic skin (BES) fibroblasts with respect to their production of protease in response to TPA. Under normal growth conditions, low levels of collagenolyic activity were detected in the culture fluids from BCE, BAE, and BES cells. BCE cells produced 5-13 times the basal levels of collagenolytic activity in response to TPA, whereas BAE cells and BES fibroblasts showed a minimal response to TPA. Both BCE and BAE cells exhibited relatively high basal levels of PA, the production of which was stimulated approximately threefold by the addition of TPA. The observation that BCE cells and not BAE cells produced high levels of both PA and collagenase activities in response to TPA demonstrates a significant difference between these two types of endothelial cells and suggests that the enhanced detectable activities are a property unique to bovine capillary and microvessel and endothelial cells. 相似文献
9.
Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture
下载免费PDF全文

Devillard E Goodheart DB Karnati SK Bayer EA Lamed R Miron J Nelson KE Morrison M 《Journal of bacteriology》2004,186(1):136-145
The cellulolytic bacterium Ruminococcus albus 8 adheres tightly to cellulose, but the molecular biology underpinning this process is not well characterized. Subtractive enrichment procedures were used to isolate mutants of R. albus 8 that are defective in adhesion to cellulose. Adhesion of the mutant strains was reduced 50% compared to that observed with the wild-type strain, and cellulose solubilization was also shown to be slower in these mutant strains, suggesting that bacterial adhesion and cellulose solubilization are inextricably linked. Two-dimensional polyacrylamide gel electrophoresis showed that all three mutants studied were impaired in the production of two high-molecular-mass, cell-bound polypeptides when they were cultured with either cellobiose or cellulose. The identities of these proteins were determined by a combination of mass spectrometry methods and genome sequence data for R. albus 8. One of the polypeptides is a family 9 glycoside hydrolase (Cel9B), and the other is a family 48 glycoside hydrolase (Cel48A). Both Cel9B and Cel48A possess a modular architecture, Cel9B possesses features characteristic of the B(2) (or theme D) group of family 9 glycoside hydrolases, and Cel48A is structurally similar to the processive endocellulases CelF and CelS from Clostridium cellulolyticum and Clostridium thermocellum, respectively. Both Cel9B and Cel48A could be recovered by cellulose affinity procedures, but neither Cel9B nor Cel48A contains a dockerin, suggesting that these polypeptides are retained on the bacterial cell surface, and recovery by cellulose affinity procedures did not involve a clostridium-like cellulosome complex. Instead, both proteins possess a single copy of a novel X module with an unknown function at the C terminus. Such X modules are also present in several other R. albus glycoside hydrolases and are phylogentically distinct from the fibronectin III-like and X modules identified so far in other cellulolytic bacteria. 相似文献
10.
Animals have evolved diverse mechanisms to protect themselves from predators. Although such defenses are typically generated endogenously, some species have evolved the ability to acquire defenses by sequestering defensive chemicals or structures from other species. Chemical sequestration is widespread among animals, but the ability to sequester entire structures, such as organelles, appears to be rare. Here, we review information on the sequestration of functional nematocysts, the stinging organelles produced by Cnidaria, by divergent predators. Nematocyst sequestration has evolved multiple times, having been documented in Ctenophora, Acoelomorpha, Platyhelminthes, and Mollusca. For each of these phyla, we review the phylogenetic distribution, mechanisms, and possible functions of nematocyst sequestration. We estimate that nematocyst sequestration has evolved 9–17 times across these four phyla. Although data on the mechanism of sequestration remain limited, similarities across several groups are evident. For example, in multiple groups, nematocysts are transported within cells from the gut to peripheral tissues, and certain types of nematocysts are selectively sequestered over others, suggesting convergent evolution in some aspects of the sequestration process across phyla. Similarly, although the function of nematocyst sequestration has not been well documented, several studies do suggest that the nematocysts sequestered by these groups are effective for defense. We highlight several traits that are common to Ctenophora, Acoelomorpha, Platyhelminthes, and Mollusca and suggest hypotheses for how these traits could have played a role in the evolution of nematocyst sequestration. Finally, we propose a generalized working model for the steps that may lead to the evolution of nematocyst sequestration and discuss important areas for future research. 相似文献