首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   507篇
  免费   25篇
  国内免费   1篇
  533篇
  2022年   6篇
  2021年   8篇
  2020年   2篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   11篇
  2015年   26篇
  2014年   37篇
  2013年   38篇
  2012年   45篇
  2011年   45篇
  2010年   29篇
  2009年   27篇
  2008年   26篇
  2007年   39篇
  2006年   34篇
  2005年   26篇
  2004年   16篇
  2003年   19篇
  2002年   15篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   5篇
  1989年   2篇
  1988年   5篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
排序方式: 共有533条查询结果,搜索用时 15 毫秒
1.
The phylogenetic relationships within the fungus gnat tribe Exechiini have been left unattended for many years. Recent studies have not shed much light on the intergeneric relationship within the tribe. Here the first attempt to resolve the phylogeny of the tribe Exechiini using molecular markers is presented. The nuclear 18S and the mitochondrial 16S, and cytochrome oxidase subunit I (COI) genes were successfully sequenced for 20 species representing 15 Exechiini genera and five outgroup genera. Bayesian, maximum parsimony and maximum likelihood analyses revealed basically congruent tree topologies and the monophyly of Exechiini, including the genus Cordyla , is confirmed. The molecular data corroborate previous morphological studies in several aspects. Cordyla is found in a basal clade together with Brachypeza , Pseudorymosia and Stigmatomeria . The splitting of the genera Allodiopsis s.l. and Brevicornu s.l. as well as the sistergroup relationship of Exechia and Exechiopsis is also supported. The limited phylogenetic information provided by morphological characters is mirrored in the limited resolution of the molecular markers used in this study. Short internal and long-terminal branches obtained may indicate a rapid radiation of the Exechiini genera during a short evolutionary period.  相似文献   
2.
From the leaves of Myrica gale 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone has been isolated. The fruits yielded 2′-hydroxy-4′,6′-dimethoxy-3′-methyldihydrochalcone. The constitutions were deduced from spectroscopic data and confirmed by synthesis.  相似文献   
3.
Quantitative determination of protein using the binding of Coomassie Brilliant Blue G-250 was investigated with respect to interference with the density gradient material metrizamide, and compared with the corresponding interference using the Lowry method. The background absorption obtained with metrizamide in the absence of protein was less than 10% of that obtained with the Lowry method. In the presence of 0–4% metrizamide, parallel standard curves were obtained with 0–67 μg of protein in the samples. The curves overlapped in the range 0–40 μg of protein when metrizamide was included in the blanks. With up to 2% final concentration of metrizamide in the assay, the curves overlapped at all protein concentrations tested (0–67 μg). Correction for metrizamide interference is thus a simple procedure and a precise estimation of the metrizamide concentration is less critical than when the Lowry assay is used. The method is well suited for quantitation of protein in samples collected from metrizamide grandients.  相似文献   
4.
Endophilin 1 is a presynaptically enriched protein which binds the GTPase dynamin and the polyphosphoinositide phosphatase synptojanin. Perturbation of endophilin function in cell-free systems and in a living synapse has implicated endophilin in endocytic vesicle budding (Ringstad, N., H. Gad, P. Low, G. Di Paolo, L. Brodin, O. Shupliakov, and P. De Camilli. 1999. Neuron. 24:143-154; Schmidt, A., M. Wolde, C. Thiele, W. Fest, H. Kratzin, A.V. Podtelejnikov, W. Witke, W.B. Huttner, and H.D. Soling. 1999. Nature. 401:133-141; Gad, H., N. Ringstad, P. Low, O. Kjaerulff, J. Gustafsson, M. Wenk, G. Di Paolo, Y. Nemoto, J. Crun, M.H. Ellisman, et al. 2000. Neuron. 27:301-312). Here, we show that purified endophilin can directly bind and evaginate lipid bilayers into narrow tubules similar in diameter to the neck of a clathrin-coated bud, providing new insight into the mechanisms through which endophilin may participate in membrane deformation and vesicle budding. This property of endophilin is independent of its putative lysophosphatydic acid acyl transferase activity, is mediated by its NH2-terminal region, and requires an amino acid stretch homologous to a corresponding region in amphiphysin, a protein previously shown to have similar effects on lipid bilayers (Takei, K., V.I. Slepnev, V. Haucke, and P. De Camilli. 1999. Nat. Cell Biol. 1:33-39). Endophilin cooligomerizes with dynamin rings on lipid tubules and inhibits dynamin's GTP-dependent vesiculating activity. Endophilin B, a protein with homology to endophilin 1, partially localizes to the Golgi complex and also deforms lipid bilayers into tubules, underscoring a potential role of endophilin family members in diverse tubulovesicular membrane-trafficking events in the cell.  相似文献   
5.

Background  

The adaptive significance of female polyandry is currently under considerable debate. In non-resource based mating systems, indirect, i.e. genetic benefits have been proposed to be responsible for the fitness gain from polyandry. We studied the benefits of polyandry in the Arctic charr (Salvelinus alpinus) using an experimental design in which the material investments by the sires and maternal environmental effects were controlled.  相似文献   
6.
Alkylation lesions in DNA and RNA result from endogenous compounds, environmental agents and alkylating drugs. Simple methylating agents, e.g. methylnitrosourea, tobacco-specific nitrosamines and drugs like temozolomide or streptozotocin, form adducts at N- and O-atoms in DNA bases. These lesions are mainly repaired by direct base repair, base excision repair, and to some extent by nucleotide excision repair (NER). The identified carcinogenicity of O(6)-methylguanine (O(6)-meG) is largely caused by its miscoding properties. Mutations from this lesion are prevented by O(6)-alkylG-DNA alkyltransferase (MGMT or AGT) that repairs the base in one step. However, the genotoxicity and cytotoxicity of O(6)-meG is mainly due to recognition of O(6)-meG/T (or C) mispairs by the mismatch repair system (MMR) and induction of futile repair cycles, eventually resulting in cytotoxic double-strand breaks. Therefore, inactivation of the MMR system in an AGT-defective background causes resistance to the killing effects of O(6)-alkylating agents, but not to the mutagenic effect. Bifunctional alkylating agents, such as chlorambucil or carmustine (BCNU), are commonly used anti-cancer drugs. DNA lesions caused by these agents are complex and require complex repair mechanisms. Thus, primary chloroethyl adducts at O(6)-G are repaired by AGT, while the secondary highly cytotoxic interstrand cross-links (ICLs) require nucleotide excision repair factors (e.g. XPF-ERCC1) for incision and homologous recombination to complete repair. Recently, Escherichia coli protein AlkB and human homologues were shown to be oxidative demethylases that repair cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues. Numerous AlkB homologues are found in viruses, bacteria and eukaryotes, including eight human homologues (hABH1-8). These have distinct locations in subcellular compartments and their functions are only starting to become understood. Surprisingly, AlkB and hABH3 also repair RNA. An evaluation of the biological effects of environmental mutagens, as well as understanding the mechanism of action and resistance to alkylating drugs require a detailed understanding of DNA repair processes.  相似文献   
7.
8.
9.
Plastids are complex organelles that are integrated into the plant host cell where they differentiate and divide in tune with plant differentiation and development. In line with their prokaryotic origin, plastid division involves both evolutionary conserved proteins and proteins of eukaryotic origin where the host has acquired control over the process. The plastid division apparatus is spatially separated between the stromal and the cytosolic space but where clear coordination mechanisms exist between the two machineries. Our knowledge of the plastid division process has increased dramatically during the past decade and recent findings have not only shed light on plastid division enzymology and the formation of plastid division complexes but also on the integration of the division process into a multicellular context. This review summarises our current knowledge of plastid division with an emphasis on biochemical features, the functional assembly of protein complexes and regulatory features of the overall process.  相似文献   
10.
The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells'' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号