首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   5篇
  94篇
  2023年   4篇
  2021年   3篇
  2018年   5篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   7篇
  2012年   6篇
  2011年   11篇
  2010年   1篇
  2009年   1篇
  2008年   10篇
  2007年   5篇
  2006年   8篇
  2005年   5篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  2000年   1篇
  1999年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
1.
Coronavirus disease 2019 (COVID-19) is a systemic inflammatory condition with high mortality that may benefit from personalized medicine and high-precision approaches. COVID-19 patient plasma was analysed with targeted proteomics of 1161 proteins. Patients were monitored from Days 1 to 10 of their intensive care unit (ICU) stay. Age- and gender-matched COVID-19-negative sepsis ICU patients and healthy subjects were examined as controls. Proteomic data were resolved using both cell-specific annotation and deep-analysis for functional enrichment. COVID-19 caused extensive remodelling of the plasma microenvironment associated with a relative immunosuppressive milieu between ICU Days 3–7, and characterized by extensive organ damage. COVID-19 resulted in (1) reduced antigen presentation and B/T-cell function, (2) increased repurposed neutrophils and M1-type macrophages, (3) relatively immature or disrupted endothelia and fibroblasts with a defined secretome, and (4) reactive myeloid lines. Extracellular matrix changes identified in COVID-19 plasma could represent impaired immune cell homing and programmed cell death. The major functional modules disrupted in COVID-19 were exaggerated in patients with fatal outcome. Taken together, these findings provide systems-level insight into the mechanisms of COVID-19 inflammation and identify potential prognostic biomarkers. Therapeutic strategies could be tailored to the immune response of severely ill patients.  相似文献   
2.
Martina Ferraguti  Sergio Magallanes  Jéssica Jiménez-Peñuela  Josué Martínez-de la Puente  Luz Garcia-Longoria  Jordi Figuerola  Jaime Muriel  Tamer Albayrak  Staffan Bensch  Camille Bonneaud  Rohan H. Clarke  Gábor Á. Czirják  Dimitar Dimitrov  Kathya Espinoza  John G. Ewen  Farah Ishtiaq  Wendy Flores-Saavedra  László Zsolt Garamszegi  Olof Hellgren  Dita Horakova  Kathryn P. Huyvaert  Henrik Jensen  Asta Križanauskienė  Marcos R. Lima  Charlene Lujan-Vega  Eyðfinn Magnussen  Lynn B. Martin  Kevin D. Matson  Anders Pape Møller  Pavel Munclinger  Vaidas Palinauskas  Péter L. Pap  Javier Pérez-Tris  Swen C. Renner  Robert Ricklefs  Sergio Scebba  Ravinder N. M. Sehgal  Manuel Soler  Eszter Szöllősi  Gediminas Valkiūnas  Helena Westerdahl  Pavel Zehtindjiev  Alfonso Marzal 《Global Ecology and Biogeography》2023,32(5):809-823

Aim

The increasing spread of vector-borne diseases has resulted in severe health concerns for humans, domestic animals and wildlife, with changes in land use and the introduction of invasive species being among the main possible causes for this increase. We explored several ecological drivers potentially affecting the local prevalence and richness of avian malaria parasite lineages in native and introduced house sparrows (Passer domesticus) populations.

Location

Global.

Time period

2002–2019.

Major taxa studied

Avian Plasmodium parasites in house sparrows.

Methods

We analysed data from 2,220 samples from 69 localities across all continents, except Antarctica. The influence of environment (urbanization index and human density), geography (altitude, latitude, hemisphere) and time (bird breeding season and years since introduction) were analysed using generalized additive mixed models (GAMMs) and random forests.

Results

Overall, 670 sparrows (30.2%) were infected with 22 Plasmodium lineages. In native populations, parasite prevalence was positively related to urbanization index, with the highest prevalence values in areas with intermediate urbanization levels. Likewise, in introduced populations, prevalence was positively associated with urbanization index; however, higher infection occurred in areas with either extreme high or low levels of urbanization. In introduced populations, the number of parasite lineages increased with altitude and with the years elapsed since the establishment of sparrows in a new locality. Here, after a decline in the number of parasite lineages in the first 30 years, an increase from 40 years onwards was detected.

Main conclusions

Urbanization was related to parasite prevalence in both native and introduced bird populations. In invaded areas, altitude and time since bird introduction were related to the number of Plasmodium lineages found to be infecting sparrows.  相似文献   
3.
The effects of avian malaria parasites of the genus Plasmodium on their hosts are insufficiently understood. This is particularly true for malarial co-infections, which predominant in many bird populations. We investigated effects of primary co-infection of Plasmodium relictum (lineage SGS1) and Plasmodium ashfordi (GRW2) on experimentally infected naive juveniles of siskin Spinus spinus, crossbill Loxia curvirostra and starling Sturnus vulgaris. All siskins and crossbills were susceptible but starlings resistant to both these infections. A general pattern of the co-infections was that heavy parasitemia (over 35% during peaks) of both parasites developed in both susceptible host species. There were no significant effects of the co-infections on mean body mass of the majority of infected birds. Mean haematocrit value decreased approximately 1.5 and 3 times in siskins and crossbills at the peak of parasitemia, respectively. Mortality was recorded among infected crossbills. We conclude that co-infections of P. relictum and P. ashfordi are highly virulent and act synergetically during primary infections in some but not all passerine birds.  相似文献   
4.
An irregular ventricular response during atrial fibrillation (AF) has been shown to mediate an increase in sympathetic nerve activity in human subjects. The molecular mechanisms remain unclear. This study aimed to investigate the impact of rate and irregularity on nerve growth factor (NGF) expression in cardiomyocytes, since NGF is known to be the main contributor to cardiac sympathetic innervation density. Cell cultures of neonatal rat ventricular myocytes were electrically stimulated for 48 h with increasing rates (0, 5 and 50 Hz) and irregularity (standard deviation (SD) = 5%, 25% and 50% of mean cycle length). Furthermore, we analyzed the calcineurin-NFAT and the endothelin-1 signalling pathways as possible contributors to NGF regulation during arrhythmic stimulation. We found that the increase of NGF expression reached its maximum at the irregularity of 25% SD by 5 Hz (NGF: 5 Hz 0% SD = 1 vs. 5 Hz 25% SD = 1.57, P < 0.05). Specific blockade of the ET-A receptor by BQ123 could abolish this NGF increase (NGF: 5 Hz 25% SD + BQ123 = 0.66, P < 0.05). High frequency electrical field stimulation (HFES) with 50 Hz decreased the NGF expression in a significant manner (NGF: 50 Hz = 0.55, P < 0.05). Inhibition of calcineurin-NFAT signalling with cyclosporine-A or 11R-VIVIT abolished the HFES induced NGF down-regulation (NGF: 50 Hz + CsA = 1.14, P < 0.05). In summary, this study reveals different signalling routes of NGF expression in cardiomyocytes exposed to increasing rates and irregularity. Whether this translates into different degrees of NGF expression and possibly neural sympathetic growth in various forms of ventricular rate control during AF remains to be elucidated in further studies.  相似文献   
5.
The influence of Thermomyces lanuginosus lipase (TLL) on the phase behaviour of liquid-crystalline phases of aqueous phytantriol as well as conformational changes of TLL entrapped in the cubic Q230 phase have been studied by small angle X-ray diffraction (SAXD), FT-Raman, and FT-IR techniques. It was found that the lipidic Q230 phase is able to accommodate up to 10 wt.% of TLL, and the temperature of phase transition to the inverted hexagonal phase H(II) increases indicating stabilizing effect of the protein. FT-Raman analysis of Trp amino acid marker band W3 revealed that the average rotation angle around the C3-Cbeta bond of four Trp residues of TLL in the Q230 phase increases. Reasoning from available TLL crystallographic data, this result is explained by structural transition of entrapped protein to so-called "open" and more related to the enzymatically-active conformation. TLL secondary structure analysis by amide I and amide III vibrational bands showed that content of alpha-helixes does not change, while a part of beta-sheet structures transforms to less ordered elements upon incorporation of protein into the Q230 phase of aqueous phytantriol.  相似文献   
6.
The three subspecies of Spotted Owl (Northern, Strix occidentalis caurina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n = 17) and unique lineages (n = 12). This high level of sequence diversity is significant because only one Leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls.  相似文献   
7.
Haemosporida is a diverse group of vector-borne parasitic protozoa, ubiquitous in terrestrial vertebrates worldwide. The renewed interest in their diversity has been driven by the extensive use of molecular methods targeting mitochondrial genes. Unfortunately, most studies target a 478?bp fragment of the cytochrome b (cytb) gene, which often cannot be used to separate lineages from different genera found in mixed infections that are common in wildlife. In this investigation, an alignment constructed with 114 mitochondrial genome sequences belonging to four genera (Leucocytozoon, Haemoproteus, Plasmodium and Hepatocystis) was used to design two different sets of primers targeting the cytb gene as well as the other two mitochondrial DNA genes: cytochrome c oxidase subunit 1 and cytochrome c oxidase subunit 3. The design of each pair of primers required consideration of different criteria, including a set for detection and another for differential amplification of DNA from parasites belonging to different avian haemosporidians. All pairs of primers were tested in three laboratories to assess their sensitivity and specificity under diverse practices and across isolates from different genera including single and natural mixed infections as well as experimental mixed infections. Overall, these primers exhibited high sensitivity regardless of the differences in laboratory practices, parasite species, and parasitemias. Furthermore, those primers designed to separate parasite genera showed high specificity, as confirmed by sequencing. In the case of cytb, a nested multiplex (single tube PCR) test was designed and successfully tested to differentially detect lineages of Plasmodium and Haemoproteus parasites by yielding amplicons with different sizes detectable in a standard agarose gel. To our knowledge, the designed assay is the first test for detection and differentiation of species belonging to these two genera in a single PCR. The experiments across laboratories provided recommendations that can be of use to those researchers seeking to standardise these or other primers to the specific needs of their field investigations.  相似文献   
8.
Invariant Natural Killer T cells (iNKT) are a versatile lymphocyte subset with important roles in both host defense and immunological tolerance. They express a highly conserved TCR which mediates recognition of the non-polymorphic, lipid-binding molecule CD1d. The structure of human iNKT TCRs is unique in that only one of the six complementarity determining region (CDR) loops, CDR3β, is hypervariable. The role of this loop for iNKT biology has been controversial, and it is unresolved whether it contributes to iNKT TCR:CD1d binding or antigen selectivity. On the one hand, the CDR3β loop is dispensable for iNKT TCR binding to CD1d molecules presenting the xenobiotic alpha-galactosylceramide ligand KRN7000, which elicits a strong functional response from mouse and human iNKT cells. However, a role for CDR3β in the recognition of CD1d molecules presenting less potent ligands, such as self-lipids, is suggested by the clonal distribution of iNKT autoreactivity. We demonstrate that the human iNKT repertoire comprises subsets of greatly differing TCR affinity to CD1d, and that these differences relate to their autoreactive functions. These functionally different iNKT subsets segregate in their ability to bind CD1d-tetramers loaded with the partial agonist α-linked glycolipid antigen OCH and structurally different endogenous β-glycosylceramides. Using surface plasmon resonance with recombinant iNKT TCRs and different ligand-CD1d complexes, we demonstrate that the CDR3β sequence strongly impacts on the iNKT TCR affinity to CD1d, independent of the loaded CD1d ligand. Collectively our data reveal a crucial role for CDR3β for the function of human iNKT cells by tuning the overall affinity of the iNKT TCR to CD1d. This mechanism is relatively independent of the bound CD1d ligand and thus forms the basis of an inherent, CDR3β dependent functional hierarchy of human iNKT cells.  相似文献   
9.
Over the last decades, the natural disturbance is increasingly putting pressure on European forests. Shifts in disturbance regimes may compromise forest functioning and the continuous provisioning of ecosystem services to society, including their climate change mitigation potential. Although forests are central to many European policies, we lack the long-term empirical data needed for thoroughly understanding disturbance dynamics, modeling them, and developing adaptive management strategies. Here, we present a unique database of >170,000 records of ground-based natural disturbance observations in European forests from 1950 to 2019. Reported data confirm a significant increase in forest disturbance in 34 European countries, causing on an average of 43.8 million m3 of disturbed timber volume per year over the 70-year study period. This value is likely a conservative estimate due to under-reporting, especially of small-scale disturbances. We used machine learning techniques for assessing the magnitude of unreported disturbances, which are estimated to be between 8.6 and 18.3 million m3/year. In the last 20 years, disturbances on average accounted for 16% of the mean annual harvest in Europe. Wind was the most important disturbance agent over the study period (46% of total damage), followed by fire (24%) and bark beetles (17%). Bark beetle disturbance doubled its share of the total damage in the last 20 years. Forest disturbances can profoundly impact ecosystem services (e.g., climate change mitigation), affect regional forest resource provisioning and consequently disrupt long-term management planning objectives and timber markets. We conclude that adaptation to changing disturbance regimes must be placed at the core of the European forest management and policy debate. Furthermore, a coherent and homogeneous monitoring system of natural disturbances is urgently needed in Europe, to better observe and respond to the ongoing changes in forest disturbance regimes.  相似文献   
10.
Cholesterol-dependent cytolysins (CDCs), of which intermedilysin (ILY) is an archetypal member, are a group of pore-forming toxins secreted by a large variety of pathogenic bacteria. These toxins, secreted as soluble monomers, oligomerize upon interaction with cholesterol in the target membrane and transect it as pores of diameters of up to 100 to 300 Å. These pores disrupt cell membranes and result in cell lysis. The immune receptor CD59 is a well-established cellular factor required for intermedilysin pore formation. In this study, we applied genome-wide CRISPR-Cas9 knock-out screening to reveal additional cellular co-factors essential for ILY-mediated cell lysis. We discovered a plethora of genes previously not associated with ILY, many of which are important for membrane constitution. We show that heparan sulfates facilitate ILY activity, which can be inhibited by heparin. Furthermore, we identified hits in both protein and lipid glycosylation pathways and show a role for glucosylceramide, demonstrating that membrane organization is important for ILY activity. We also cross-validated identified genes with vaginolysin and pneumolysin and found that pneumolysin’s cytolytic activity strongly depends on the asymmetric distribution of membrane phospholipids. This study shows that membrane-targeting toxins combined with genetic screening can identify genes involved in biological membrane composition and metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号