首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  9篇
  2015年   1篇
  2014年   2篇
  2011年   1篇
  2009年   2篇
  1989年   1篇
  1987年   1篇
  1972年   1篇
排序方式: 共有9条查询结果,搜索用时 0 毫秒
1
1.
Whether evolution is erratic due to random historical details, or is repeatedly directed along similar paths by certain constraints, remains unclear. Epistasis (i.e. non-additive interaction between mutations that affect fitness) is a mechanism that can contribute to both scenarios. Epistasis can constrain the type and order of selected mutations, but it can also make adaptive trajectories contingent upon the first random substitution. This effect is particularly strong under sign epistasis, when the sign of the fitness effects of a mutation depends on its genetic background. In the current study, we examine how epistatic interactions between mutations determine alternative evolutionary pathways, using in vitro evolution of the antibiotic resistance enzyme TEM-1 β-lactamase. First, we describe the diversity of adaptive pathways among replicate lines during evolution for resistance to a novel antibiotic (cefotaxime). Consistent with the prediction of epistatic constraints, most lines increased resistance by acquiring three mutations in a fixed order. However, a few lines deviated from this pattern. Next, to test whether negative interactions between alternative initial substitutions drive this divergence, alleles containing initial substitutions from the deviating lines were evolved under identical conditions. Indeed, these alternative initial substitutions consistently led to lower adaptive peaks, involving more and other substitutions than those observed in the common pathway. We found that a combination of decreased enzymatic activity and lower folding cooperativity underlies negative sign epistasis in the clash between key mutations in the common and deviating lines (Gly238Ser and Arg164Ser, respectively). Our results demonstrate that epistasis contributes to contingency in protein evolution by amplifying the selective consequences of random mutations.  相似文献   
2.
The non-receptor isoform of protein-tyrosine phosphatase ϵ (cyt-PTPe) supports adhesion of bone-resorbing osteoclasts by activating Src downstream of integrins. Loss of cyt-PTPe reduces Src activity in osteoclasts, reduces resorption of mineralized matrix both in vivo and in cell culture, and induces mild osteopetrosis in young female PTPe KO mice. Activation of Src by cyt-PTPe is dependent upon this phosphatase undergoing phosphorylation at its C-terminal Tyr-638 by partially active Src. To understand how cyt-PTPe activates Src, we screened 73 Src homology 2 (SH2) domains for binding to Tyr(P)-638 of cyt-PTPe. The SH2 domain of GRB2 bound Tyr(P)-638 of cyt-PTPe most prominently, whereas the Src SH2 domain did not bind at all, suggesting that GRB2 may link PTPe with downstream molecules. Further studies indicated that GRB2 is required for activation of Src by cyt-PTPe in osteoclast-like cells (OCLs) in culture. Overexpression of GRB2 in OCLs increased activating phosphorylation of Src at Tyr-416 and of cyt-PTPe at Tyr-638; opposite results were obtained when GRB2 expression was reduced by shRNA or by gene inactivation. Phosphorylation of cyt-PTPe at Tyr-683 and its association with GRB2 are integrin-driven processes in OCLs, and cyt-PTPe undergoes autodephosphorylation at Tyr-683, thus limiting Src activation by integrins. Reduced GRB2 expression also reduced the ability of bone marrow precursors to differentiate into OCLs and reduced the fraction of OCLs in which podosomal adhesion structures assume organization typical of active, resorbing cells. We conclude that GRB2 physically links cyt-PTPe with Src and enables cyt-PTPe to activate Src downstream of activated integrins in OCLs.  相似文献   
3.
Summary The cytological behavior of the spindle apparatus was studied in cells prone to nondisjunction (ND), i.e., PHA-stimulated lymphocytes derived from children suffering from different types of neoplasia. These cells, which exhibited a high frequency of nonspecific aneuploidy, revealed an increased resistance of the spindle fibers to colchicine, podophyllotoxin, and cold, wich was several times that of lymphocytes derived from healthy children. The results are in accord with previous findings showing a high resistance of spindle microtubules to the antimicrotubular agents colchicine, podopyllotoxin, vinblastine, and cold in PHA-stimulated lymphocytes derived from individuals prone to meiotic ND. It is therefore assumed that high resistance of the spindle apparatus to antimicrotubule agents characterizes cells at high risk for aneuploidy, and possibly, the overstabilized spindle fibers are responsible for failure of chromosomal disjunction.  相似文献   
4.

Background

HIV in Israel started with a subtype-B epidemic among men who have sex with men, followed in the 1980s and 1990s by introductions of subtype C from Ethiopia (predominantly acquired by heterosexual transmission) and subtype A from the former Soviet Union (FSU, most often acquired by intravenous drug use). The epidemic matured over the last 15 years without additional large influx of exogenous infections. Between 2005 and 2013 the number of infected men who have sex with men (MSM) increased 2.9-fold, compared to 1.6-fold and 1.3-fold for intravenous drug users (IVDU) and Ethiopian-origin residents. Understanding contemporary spread is essential for effective public health planning.

Methods

We analyzed demographic and virologic data from 1,427 HIV-infected individuals diagnosed with HIV-I during 1998–2012. HIV phylogenies were reconstructed with maximum-likelihood and Bayesian methods.

Results

Subtype-B viruses, but not A or C, demonstrated a striking number of large clusters with common ancestors having posterior probability ≥0.95, including some suggesting presence of transmission networks. Transmitted drug resistance was highest in subtype B (13%). MSM represented a frequent risk factor in cross-ethnic transmission, demonstrated by the presence of Israeli-born with non-B virus infections and FSU immigrants with non-A subtypes.

Conclusions

Reconstructed phylogenetic trees demonstrated substantial grouping in subtype B, but not in non-MSM subtype-A or in subtype-C, reflecting differences in transmission dynamics linked to HIV transmission categories. Cross-ethnic spread occurred through multiple independent introductions, with MSM playing a prevalent role in the transmission of the virus. Such data provide a baseline to track epidemic trends and will be useful in informing and quantifying efforts to reduce HIV transmission.  相似文献   
5.
6.
Female mice lacking protein tyrosine phosphatase ε (PTP ε) are mildly osteopetrotic. Osteoclasts from these mice resorb bone matrix poorly, and the structure, stability, and cellular organization of their podosomal adhesion structures are abnormal. Here we compare the role of PTP ε with that of the closely related PTP α in osteoclasts. We show that bone mass and bone production and resorption, as well as production, structure, function, and podosome organization of osteoclasts, are unchanged in mice lacking PTP α. The varying effects of either PTP on podosome organization in osteoclasts are caused by their distinct N-termini. Osteoclasts express the receptor-type PTP α (RPTPa), which is absent from podosomes, and the nonreceptor form of PTP ε (cyt-PTPe), which is present in these structures. The presence of the unique 12 N-terminal residues of cyt-PTPe is essential for podosome regulation; attaching this sequence to the catalytic domains of PTP α enables them to function in osteoclasts. Serine 2 within this sequence regulates cyt-PTPe activity and its effects on podosomes. We conclude that PTPs α and ε play distinct roles in osteoclasts and that the N-terminus of cyt-PTPe, in particular serine 2, is critical for its function in these cells.  相似文献   
7.
The nonreceptor isoform of tyrosine phosphatase epsilon (cyt-PTPe) supports osteoclast adhesion and activity in vivo, leading to increased bone mass in female mice lacking PTPe (EKO mice). The structure and organization of the podosomal adhesion structures of EKO osteoclasts are abnormal; the molecular mechanism behind this is unknown. We show here that EKO podosomes are disorganized, unusually stable, and reorganize poorly in response to physical contact. Phosphorylation and activities of Src, Pyk2, and Rac are decreased and Rho activity is increased in EKO osteoclasts, suggesting that integrin signaling is defective in these cells. Integrin activation regulates cyt-PTPe by inducing Src-dependent phosphorylation of cyt-PTPe at Y638. This phosphorylation event is crucial because wild-type—but not Y638F—cyt-PTPe binds and further activates Src and restores normal stability to podosomes in EKO osteoclasts. Increasing Src activity or inhibiting Rho or its downstream effector Rho kinase in EKO osteoclasts rescues their podosomal stability phenotype, indicating that cyt-PTPe affects podosome stability by functioning upstream of these molecules. We conclude that cyt-PTPe participates in a feedback loop that ensures proper Src activation downstream of integrins, thus linking integrin signaling with Src activation and accurate organization and stability of podosomes in osteoclasts.  相似文献   
8.
Inoculation of an immortalized clone of radiation leukemia virus (RadLV)-transformed antigen (ovalbumin, OVA)-specific T cells together with the relevant carrier (OVA) into unprimed syngeneic mice results in a preferential increase in the expression of anti-OVA antibodies of the immunoglobulin (Ig)G2b and IgG2a isotypes. Identical boosting of the clone-primed mice further augments the preferential production of anti-OVA antibodies of these two isotypes. The class-related helper activity is not due to nonspecific shift of class expression produced by the injected tumor cells, as a non-helper clone of RadLV-transformed T cells does not change the isotypic pattern of anti-OVA antibodies in the inoculated mice. A carrier-specific activation of the B cells is responsible for the class-restricted function of the helper clone. The isotypic profile of anti-hapten antibodies in mice injected with 2,4-dinitrophenyl (DNP)-bovine serum albumin and OVA-specific helper clone is not altered. On the other hand, mice inoculated with the OVA-specific helper clone and DNP-OVA respond with a preferential elevation of anti-DNP antibodies of the IgG2a and IgG2b isotypes. The preferential class augmentation may result from carrier-specific signals delivered by the helper clone which activate B cells in vivo toward certain CH expression. Alternatively, the observed class pattern may be induced by an isotype noncommited helper clone which triggers selected population of B lymphocytes of defined differentiation status toward secretion of a restricted array of isotypes. Regardless of the mechanism of the clone-dependent class expression, the isotypic profile in most of the experiments clearly demonstrates that an antigen-specific helper clone may be one of the elements which regulates the class of antibodies to be produced in vivo under normal physiologic conditions.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号