全文获取类型
收费全文 | 243篇 |
免费 | 8篇 |
专业分类
251篇 |
出版年
2022年 | 1篇 |
2021年 | 4篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2017年 | 1篇 |
2016年 | 5篇 |
2015年 | 8篇 |
2014年 | 10篇 |
2013年 | 11篇 |
2012年 | 13篇 |
2011年 | 8篇 |
2010年 | 12篇 |
2009年 | 11篇 |
2008年 | 11篇 |
2007年 | 7篇 |
2006年 | 4篇 |
2005年 | 4篇 |
2004年 | 9篇 |
2003年 | 4篇 |
2002年 | 6篇 |
2001年 | 5篇 |
2000年 | 3篇 |
1999年 | 10篇 |
1998年 | 3篇 |
1996年 | 4篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1992年 | 8篇 |
1991年 | 10篇 |
1990年 | 6篇 |
1989年 | 7篇 |
1988年 | 3篇 |
1987年 | 1篇 |
1986年 | 5篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 7篇 |
1980年 | 1篇 |
1979年 | 10篇 |
1978年 | 11篇 |
1977年 | 4篇 |
1975年 | 1篇 |
1974年 | 5篇 |
1973年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有251条查询结果,搜索用时 0 毫秒
1.
J J Enghild I B Th?gersen F Cheng L A Fransson P Roepstorff H Rahbek-Nielsen 《Biochemistry》1999,38(36):11804-11813
Inter-alpha-inhibitor-derived bikunin was purified and the molecular mass was determined to be approximately 8.7 kDa higher than the prediction based on the protein sequence, suggesting extensive posttranslational modifications. These modifications were identified and characterized by a combination of protein and carbohydrate analytical techniques. Three modifications were identified: (i) glycosylation of Ser(10), (ii) glycosylation of Asn(45), and (iii) a heterogeneous truncation of the C-terminus. The Asn(45) associated glycan was shown to be a homogenous "complex type" biantennary structure. The chondroitin-4-sulfate (CS) chain attached to Ser(10) was analyzed by both matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and acrylamide gel electrophoresis after partial chondroitin ABC lyase digestion. The analyses showed that the CS chains were composed of 15 +/- 3 [GlcUA-GalNAc] disaccharide units. On average, every forth disaccharide was sulfated, and these sulfated disaccharides appeared to be more common near the reducing end. Anion exchange chromatography at pH 3. 4 of intact bikunin resulted in the isolation of four isotypes shown to differ only in the amount of sulfation. Heavy chain 1 (HC1) and heavy chain 2 (HC2) are attached to the CS by a novel cross-link [Enghild, J. J., Salvesen, G., Hefta, S. A., Thogersen, I. B., Rutherfurd, S., and Pizzo, S. V. (1991) J. Biol. Chem. 266, 747-751], and the order in which the two heavy chains are positioned on the CS was examined. The results indicate that HC1 is in close proximity to HC2 and both are near the less sulfated nonreducing end of the CS. Taken together, the data show the following organization of the IalphaI molecule: [GlcUA-GalNAc](a)-HC1-[GlcUA-GalNAc](b)-HC2-[GlcUA-GalNAc](c)-Gal -Gal-Xyl-Ser(10)-bikunin, (a + b + c = 12-18 disaccharides). 相似文献
2.
3.
Gendron C Kashiwagi M Lim NH Enghild JJ Thøgersen IB Hughes C Caterson B Nagase H 《The Journal of biological chemistry》2007,282(25):18294-18306
Aggrecanases have been characterized as proteinases that cleave the Glu373-Ala374 bond of the aggrecan core protein, and they are multidomain metalloproteinases belonging to the ADAMTS (adamalysin with thrombospondin type 1 motifs) family. The first aggrecanases discovered were ADAMTS-4 (aggrecanase 1) and ADAMTS-5 (aggrecanase 2). They contain a zinc catalytic domain followed by non-catalytic ancillary domains, including a disintegrin domain, a thrombospondin domain, a cysteine-rich domain, and a spacer domain. In the case of ADAMTS-5, a second thrombospondin domain follows the spacer domain. We previously reported that the non-catalytic domains of ADAMTS-4 influence both its extracellular matrix interaction and proteolytic abilities. Here we report the effects of these domains of ADAMTS-5 on the extracellular matrix interaction and proteolytic activities and compare them with those of ADAMTS-4. Although the spacer domain was critical for ADAMTS-4 localization in the matrix, the cysteine-rich domain influenced ADAMTS-5 localization. Similar to previous reports of other ADAMTS family members, very little proteolytic activity was detected with the ADAMTS-5 catalytic domain alone. The sequential inclusion of each carboxyl-terminal domain enhanced its activity against aggrecan, carboxymethylated transferrin, fibromodulin, decorin, biglycan, and fibronectin. Both ADAMTS-4 and -5 had a broad optimal activity at pH 7.0-9.5. Aggrecanolytic activities were sensitive to the NaCl concentration, but activities on non-aggrecan substrates, e.g. carboxymethylated transferrin, were not affected. Although ADAMTS-4 and ADAMTS-5 had similar general proteolytic activities, the aggrecanase activity of ADAMTS-5 was at least 1,000-fold greater than that of ADAMTS-4 under physiological conditions. Our studies suggest that ADAMTS-5 is a major aggrecanase in cartilage metabolism and pathology. 相似文献
4.
5.
Ramsgaard L Englert JM Manni ML Milutinovic PS Gefter J Tobolewski J Crum L Coudriet GM Piganelli J Zamora R Vodovotz Y Enghild JJ Oury TD 《PloS one》2011,6(5):e20132
Background
The receptor for advanced glycation end-products (RAGE) has been suggested to modulate lung injury in models of acute pulmonary inflammation. To study this further, model systems utilizing wild type and RAGE knockout (KO) mice were used to determine the role of RAGE signaling in lipopolysaccharide (LPS) and E. coli induced acute pulmonary inflammation. The effect of intraperitoneal (i.p.) and intratracheal (i.t.) administration of mouse soluble RAGE on E. coli injury was also investigated.Methodology/Principal Findings
C57BL/6 wild type and RAGE KO mice received an i.t. instillation of LPS, E. coli, or vehicle control. Some groups also received i.p. or i.t. administration of mouse soluble RAGE. After 24 hours, the role of RAGE expression on inflammation was assessed by comparing responses in wild type and RAGE KO. RAGE protein levels decreased in wild type lung homogenates after treatment with either LPS or bacteria. In addition, soluble RAGE and HMGB1 increased in the BALF after E. coli instillation. RAGE KO mice challenged with LPS had the same degree of inflammation as wild type mice. However, when challenged with E. coli, RAGE KO mice had significantly less inflammation when compared to wild type mice. Most cytokine levels were lower in the BALF of RAGE KO mice compared to wild type mice after E. coli injury, while only monocyte chemotactic protein-1, MCP-1, was lower after LPS challenge. Neither i.p. nor i.t. administration of mouse soluble RAGE attenuated the severity of E. coli injury in wild type mice.Conclusions/Significance
Lack of RAGE in the lung does not protect against LPS induced acute pulmonary inflammation, but attenuates injury following live E. coli challenge. These findings suggest that RAGE mediates responses to E. coli-associated pathogen-associated molecular pattern molecules other than LPS or other bacterial specific signaling responses. Soluble RAGE treatment had no effect on inflammation. 相似文献6.
Conformation of the reactive site loop of alpha 1-proteinase inhibitor probed by limited proteolysis. 总被引:2,自引:0,他引:2
Elucidation of the reactive site loop (RSL) structure of serpins is essential for understanding their inhibitory mechanism. Maintenance of the RSL structure is likely to depend on its interactions with a dominant unit of secondary structure known as the A-sheet. We investigated these interactions by subjecting alpha 1-proteinase inhibitor to limited proteolysis using several enzymes. The P1-P10 region of the RSL was extremely sensitive to proteolysis, indicating that residues P3'-P13 are exposed in the virgin inhibitor. Following cleavage eight or nine residues upstream from the reactive site, the protein noncovalently polymerized, sometimes forming circles. Polymerization resulted from insertion of the P1-P8 or P1-P9 region of one molecule into the A-sheet of an adjacent proteolytically modified molecule. The site of cleavage within the RSL had a distinct effect on the conformational stability of the protein, such that stability increased as more amino acids insert into the A-sheet. We conclude that the A-sheet of virgin alpha 1-proteinase inhibitor resembles that of ovalbumin, except that it contains a bulge where two or three RSL residues are inserted. Insertion of seven or eight RSL residues, allowed by proteolytic cleavage of the RSL, causes expansion of the sheet. It is likely that the RSL of alpha 1-proteinase inhibitor and several serpins exhibits significantly more mobility than is common among other protein inhibitors of serine proteinases. 相似文献
7.
Dominika Staniec Miroslaw Ksiazek Ida B. Th?gersen Jan J. Enghild Aneta Sroka Danuta Bryzek Matthew Bogyo Magnus Abrahamson Jan Potempa 《The Journal of biological chemistry》2015,290(45):27248-27260
Porphyromonas gingivalis is a peptide-fermenting asaccharolytic periodontal pathogen. Its genome contains several genes encoding cysteine peptidases other than gingipains. One of these genes (PG1055) encodes a protein called Tpr (thiol protease) that has sequence similarity to cysteine peptidases of the papain and calpain families. In this study we biochemically characterize Tpr. We found that the 55-kDa Tpr inactive zymogen proteolytically processes itself into active forms of 48, 37, and 33 kDa via sequential truncations at the N terminus. These processed molecular forms of Tpr are associated with the bacterial outer membrane where they are likely responsible for the generation of metabolic peptides required for survival of the pathogen. Both autoprocessing and activity were dependent on calcium concentrations >1 mm, consistent with the protein''s activity within the intestinal and inflammatory milieus. Calcium also stabilized the Tpr structure and rendered the protein fully resistant to proteolytic degradation by gingipains. Together, our findings suggest that Tpr is an example of a bacterial calpain, a calcium-responsive peptidase that may generate substrates required for the peptide-fermenting metabolism of P. gingivalis. Aside from nutrient generation, Tpr may also be involved in evasion of host immune response through degradation of the antimicrobial peptide LL-37 and complement proteins C3, C4, and C5. Taken together, these results indicate that Tpr likely represents an important pathogenesis factor for P. gingivalis. 相似文献
8.
Sørensen BK Højrup P Østergård E Jørgensen CS Enghild J Ryder LR Houen G 《Analytical biochemistry》2002,304(1):33-41
A fast and convenient method for silver staining of proteins on electroblotting membranes was developed based on Gallyas' histochemical intensifier and applied to human endothelial cell proteins separated by one- and two-dimensional electrophoresis and electroblotted to polyvinyl difluoride membranes. The method allowed detection of proteins on membranes with a sensitivity equal to the sensitivity of the most sensitive silver-staining protocols for electrophoresis gels. Also, the method was compatible with preceding immunostaining on the same membrane. Furthermore, an intensifying method for proteins in silver-stained SDS-PAGE gels was developed based on Gallyas' histochemical intensifier. This method was applied to proteins separated by one- and two-dimensional gel electrophoresis and visualized by one of several silver-staining methods. Maximal intensification was achieved for the less sensitive but fast acidic silver-staining protocols, but even for the very sensitive alkaline protocols a significant increase in signal to noise ratio was obtained. In particular, negatively stained or invisible proteins on the silver-stained gels were found to be visualized by the Gallyas stain. Proteins from silver-stained and Gallyas-stained gels were identified by mass spectrometry, and the intensification procedure was fully compatible with mass spectrometry. 相似文献
9.
Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin) 总被引:21,自引:0,他引:21
The mechanism of activation of tissue procollagenase by matrix metalloproteinase 3 (MMP-3)/stromelysin was investigated by kinetic and sequence analyses. MMP-3 slowly activated procollagenase by cleavage of the Gln80-Phe81 bond to generate a fully active collagenase of Mr = 41,000. The specific collagenolytic activity of this species was 27,000 units/mg (1 unit = 1 microgram of collagen digested in 1 min at 37 degrees C). Treatment of procollagenase with plasmin or plasma kallikrein gave intermediates of Mr = 46,000. These intermediates underwent rapid autolytic activation, via cleaving the Thr64-Leu65 bond, to give a collagenase species of Mr = 43,000 that exhibited only about 15% of the maximal specific activity. Similarly, (4-aminophenyl)mercuric acetate (APMA) activated procollagenase by intramolecular cleavage of the Val67-Met68 bond to generate a collagenase species of Mr = 43,000, but with only about 25% of the maximal specific activity. Subsequent incubation of the 43,000-Mr species with MMP-3 resulted in rapid, full activation and generated the 41,000-Mr collagenase by cleaving the Gln80-Phe81 bond. In the case of the proteinase-generated 43,000-Mr species, the action of MMP-3 was approximately 24,000 times faster than that on the native procollagenase. This indicates that the removal of a portion of the propeptide of procollagenase induces conformational changes around the Gln80-Phe81 bond, rendering it readily susceptible to MMP-3 activation. Prolonged treatment of procollagenase with APMA in the absence of MMP-3 also generated a 41,000-Mr collagenase, but this species had only 40% of the full activity and contained Val82 and Leu83 as NH2 termini. Thus, cleavage of the Gln80-Phe81 bond by MMP-3 is crucial for the expression of full collagenase activity. These results suggest that the activation of procollagenase by MMP-3 is regulated by two pathways: one with direct, slow activation by MMP-3 and the other with rapid activation in conjunction with tissue and/or plasma proteinases. The latter event may explain an accelerated degradation of collagens under certain physiological and pathological conditions. 相似文献
10.