首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2008年   1篇
  1996年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
2.
3.
The phasmatid species Didymuria violescens comprises ten distinct chromosome races parapatrically distributed such that adjacent races meet in narrow zones of overlap. The interracial karyotypic variation is remarkable and involves both diploid number differences (in the range 26–40) and differences in the sex-chromosome mechanism. Karyotypic comparisons and analyses of the meiotic pairing relationships in interracial hybrids have shown that the differences derive in large part from a series of centric fusion events and X-autosome fusions, which together contribute to the reduction in chromosome number within the species. The origin and development of the current racial pattern can best be interpreted in terms of the stasipatric hypothesis of White.This paper is affectionately dedicated to Professor Spencer Smith-White on the occasion of his 66th birthday.  相似文献   
4.
Human 8-oxoguanine-DNA glycosylase (OGG1) plays a major role in the base excision repair pathway by removing 8-oxoguanine base lesions generated by reactive oxygen species. Here we report a novel interaction between OGG1 and Poly(ADP-ribose) polymerase 1 (PARP-1), a DNA-damage sensor protein involved in DNA repair and many other cellular processes. We found that OGG1 binds directly to PARP-1 through the N-terminal region of OGG1, and this interaction is enhanced by oxidative stress. Furthermore, OGG1 binds to PARP-1 through its BRCA1 C-terminal (BRCT) domain. OGG1 stimulated the poly(ADP-ribosyl)ation activity of PARP-1, whereas decreased poly(ADP-ribose) levels were observed in OGG1(-/-) cells compared with wild-type cells in response to DNA damage. Importantly, activated PARP-1 inhibits OGG1. Although the OGG1 polymorphic variant proteins R229Q and S326C bind to PARP-1, these proteins were defective in activating PARP-1. Furthermore, OGG1(-/-) cells were more sensitive to PARP inhibitors alone or in combination with a DNA-damaging agent. These findings indicate that OGG1 binding to PARP-1 plays a functional role in the repair of oxidative DNA damage.  相似文献   
5.
Two V3 vitellogenin clones isolated from genomic libraries ofDrosophila grimshawi (G1, Auwahi, Maui) were found to differ in length. Structural comparison of the two clones established that the length difference could be attributed to two insertions/deletions of about 200 bp each, both within the 3 flanking sequences of the gene. The two length variants appeared to be polymorphic in the G1 laboratory strain, as demonstrated by analysis of genomic DNA isolated from single flies. The deleted variant sequence was traced by further analysis to two otherD. grimshawi strains (PK9 and S10G1) which originated from the island of Molokai. The existence of this morph in the Maui strain appears to have resulted from a laboratory stock contamination at the Drosophila Stock Center. In the course of a few generations of culture of this G1 strain at New York University, the deleted morph increased its frequency surprisingly rapidly, almost replacing the original morph, while at the Bowling Green Stock Center, the original morph still predominates. These frequency changes are most likely consequences of genetic drift due to bottlenecks in the maintenance and propagation of this stock.This research was supported by NIH Grant AG01870 and NSF Grant PCM-7913074 to M. P. K. and E. M. C. and an NYU Research Challenge Fund Award to M. P. K.  相似文献   
6.
7.
Nucleotide sequence analysis has demonstrated that interspecific size variation in the YP2 yolk protein among HawaiianDrosophila is due to in-frame insertions and deletions in two repetitive segments of the coding region of the Yp2 gene. Sequence comparisons of the complex repetitive region close to the 5′ end of this gene across 34 endemic Hawaiian taxa revealed five length morphs, spanning a length difference of 21 nucleotides (nt). A phylogenetic character reconstruction of the length mutations on an independently derived molecular phylogeny showed clade-specific length variants arising from six ancient events: two identical insertions of 6 nt, and four deletions, one of 6 nt, one of 12 nt, and two identical but independent deletions of 15 nt. These mutations can be attributed to replication slippage with nontandem trinucleotide repeats playing a major role in the slipped-strand mispairing. Geographic analysis suggests that the 15 nt deletion which distinguishes theplanitibia subgroup from thecyrtoloma subgroup occurred on Oahu about 3 million years ago. The homoplasies observed caution against relying too heavily on nucleotide insertions/deletions for phylogenetic inference. In contrast to the extensive repeat polymorphisms within otherDrosophila and the human species, the more complex 5′Yp2 repetitive region analyzed here appears to lack polymorphism among HawaiianDrosophila, perhaps due to founder effects, low population sizes, and hitchhiking effects of selection on the immediately adjacent 5′ region. Correspondence to: M.P. Kambysellis  相似文献   
8.
The deployment of endovascular implants such as stents in the treatment of cardiovascular disease damages the vascular endothelium, increasing the risk of thrombosis and promoting neointimal hyperplasia. The rapid restoration of a functional endothelium is known to reduce these complications. Circulating endothelial progenitor cells (EPCs) are increasingly recognized as important contributors to device re-endothelialization. Extracellular matrix proteins prominent in the vessel wall may enhance EPC-directed re-endothelialization. We examined attachment, spreading and proliferation on recombinant human tropoelastin (rhTE) and investigated the mechanism and site of interaction. EPCs attached and spread on rhTE in a dose dependent manner, reaching a maximal level of 56±3% and 54±3%, respectively. EPC proliferation on rhTE was comparable to vitronectin, fibronectin and collagen. EDTA, but not heparan sulfate or lactose, reduced EPC attachment by 81±3%, while full attachment was recovered after add-back of manganese, inferring a classical integrin-mediated interaction. Integrin αVβ3 blocking antibodies decreased EPC adhesion and spreading on rhTE by 39±3% and 56±10% respectively, demonstrating a large contribution from this specific integrin. Attachment of EPCs on N-terminal rhTE constructs N25 and N18 accounted for most of this interaction, accompanied by comparable spreading. In contrast, attachment and spreading on N10 was negligible. αVβ3 blocking antibodies reduced EPC spreading on both N25 and N18 by 45±4% and 42±14%, respectively. In conclusion, rhTE supports EPC binding via an integrin mechanism involving αVβ3. N25 and N18, but not N10 constructs of rhTE contribute to EPC binding. The regulation of EPC activity by rhTE may have implications for modulation of the vascular biocompatibility of endovascular implants.  相似文献   
9.
Recent studies link synaptojanin 1 (synj1), the main phosphoinositol (4,5)-biphosphate phosphatase (PI(4,5)P2-degrading enzyme) in the brain and synapses, to Alzheimer disease. Here we report a novel mechanism by which synj1 reversely regulates cellular clearance of amyloid-β (Aβ). Genetic down-regulation of synj1 reduces both extracellular and intracellular Aβ levels in N2a cells stably expressing the Swedish mutant of amyloid precursor protein (APP). Moreover, synj1 haploinsufficiency in an Alzheimer disease transgenic mouse model expressing the Swedish mutant APP and the presenilin-1 mutant ΔE9 reduces amyloid plaque load, as well as Aβ40 and Aβ42 levels in hippocampus of 9-month-old animals. Reduced expression of synj1 attenuates cognitive deficits in these transgenic mice. However, reduction of synj1 does not affect levels of full-length APP and the C-terminal fragment, suggesting that Aβ generation by β- and γ-secretase cleavage is not affected. Instead, synj1 knockdown increases Aβ uptake and cellular degradation through accelerated delivery to lysosomes. These effects are partially dependent upon elevated PI(4,5)P2 with synj1 down-regulation. In summary, our data suggest a novel mechanism by which reduction of a PI(4,5)P2-degrading enzyme, synj1, improves amyloid-induced neuropathology and behavior deficits through accelerating cellular Aβ clearance.  相似文献   
10.
Parkinson's disease (PD) is characterized by the loss of dopamine-producing neurons in the nigrostriatal system. Numerous researchers in the past have attempted to track the progression of dopaminergic depletion in PD. We applied a quantitative non-invasive PET imaging technique to follow this degeneration process in an MPTP-induced mouse model of PD. The VMAT2 ligand (18)F-DTBZ (AV-133) was used as a radioactive tracer in our imaging experiments to monitor the changes of the dopaminergic system. Intraperitoneal administrations of MPTP (a neurotoxin) were delivered to mice at regular intervals to induce lesions consistent with PD. Our results indicate a significant decline in the levels of striatal dopamine and its metabolites (DOPAC and HVA) following MPTP treatment as determined by HPLC method. Images obtained by positron emission tomography revealed uptake of (18)F-DTBZ analog in the mouse striatum. However, reduction in radioligand binding was evident in the striatum of MPTP lesioned animals as compared with the control group. Immunohistochemical analysis further confirmed PET imaging results and indicated the progressive loss of dopaminergic neurons in treated animals compared with the control counterparts. In conclusion, our findings suggest that MPTP induced PD in mouse model is appropriate to follow the degeneration of dopaminergic system and that (18)F-DTBZ analog is a potentially sensitive radiotracer that can used to diagnose changes associated with PD by PET imaging modality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号