首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   27篇
  370篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   9篇
  2015年   10篇
  2014年   13篇
  2013年   14篇
  2012年   29篇
  2011年   23篇
  2010年   15篇
  2009年   7篇
  2008年   20篇
  2007年   12篇
  2006年   17篇
  2005年   19篇
  2004年   12篇
  2003年   14篇
  2002年   15篇
  2001年   9篇
  2000年   5篇
  1999年   4篇
  1998年   7篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1993年   2篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   8篇
  1980年   5篇
  1978年   5篇
  1975年   1篇
  1974年   2篇
  1973年   3篇
  1968年   1篇
  1953年   1篇
  1952年   2篇
  1921年   1篇
排序方式: 共有370条查询结果,搜索用时 0 毫秒
1.
Hair cells of the inner ear develop from an equivalence group marked by expression of the proneural gene Atoh1. In mouse, Atoh1 is necessary for hair cell differentiation, but its role in specifying the equivalence group (proneural function) has been questioned and little is known about its upstream activators. We have addressed these issues in zebrafish. Two zebrafish homologs, atoh1a and atoh1b, are together necessary for hair cell development. These genes crossregulate each other but are differentially required during distinct developmental periods, first in the preotic placode and later in the otic vesicle. Interactions with the Notch pathway confirm that atoh1 genes have early proneural function. Fgf3 and Fgf8 are upstream activators of atoh1 genes during both phases, and foxi1, pax8 and dlx genes regulate atoh1b in the preplacode. A model is presented in which zebrafish atoh1 genes operate in a complex network leading to hair cell development.  相似文献   
2.
Primary cilia are microtubule based sensory organelles that play an important role in maintaining cellular homeostasis. Malfunctioning results in a number of abnormalities, diseases (ciliopathies) and certain types of cancer. Morphological and biochemical knowledge on cilia/flagella, (early) ciliogenesis and intraflagellar transport is often obtained from model systems (e.g. Chlamydomonas) or from multi ciliary cells like lung or kidney epithelium.In this study endothelial cells in isolated human umbilical veins (HUVs) and cultured human umbilical vein endothelial cells (HUVECs) are compared and used to study primary ciliogenesis. By combining fluorescence microscopy, SEM, 2D and 3D TEM techniques we found that under the tested culturing conditions 60% of cobblestone endothelial cells form a primary cilium. Only a few of these cilia are present (protruding) on the endothelial cell surface, meaning that most primary cilia are in the cytoplasm (non-protruding). This was also observed in situ in the endothelial cells in the umbilical vein. The exact function(s?) of these non-protruding cilia remains unclear.Ultra-structural analysis of cultured HUVECs and the endothelial layer of the human umbilical veins reveal that there are: vesicles inside the ciliary pocket during the early stages of ciliogenesis; tubules/vesicles from the cytoplasm fuse with the ciliary sheath; irregular axoneme patterns, and two round, membranous vesicles inside the basal body.We conclude that cobblestone cultured HUVECs are comparable to the in vivo epithelial lining of the umbilical veins and therefore provide a well defined, relatively simple human model system with a reproducible number of non-protruding primary cilia for studying ciliogenesis.  相似文献   
3.
Summary The Carboniferous, particularly during the Serpukhovian and Bashkirian time, was a period of scarce shallow-water calcimicrobial-microbialite reef growth. Organic frameworks developed on high-rising platforms are, however, recorded in the Precaspian Basin subsurface, Kazakhstan, Russia, Japan and Spain and represent uncommon occurrences within the general trend of low accumulation rates and scarcity of shallow-water reefs. Sierra del Cuera (Cantabrian Mountains, N Spain) is a well-exposed high-rising carbonate platform of Late Carboniferous (Bashkirian-Moscovian) age with a microbial boundstone-dominated slope dipping from 20° up to 45°. Kilometer-scale continuous exposures allow the detailed documentation of slope geometry and lithofacies spatial distribution. This study aims to develop a depositional model of steep-margined Late Paleozoic platforms built by microbial carbonates and to contribute to the understanding of the controlling factors on lithofacies characteristics, stacking patterns, accumulation rates and evolution of the depositional architecture of systems, which differ from light-dependent coralgal platform margins. From the platform break to depths of nearly 300 m, the slope is dominated by massive cement-rich boundstone, which accumulated through the biologically induced precipitation of micrite. Boundstone facies (type A) with peloidal carbonate mud, fenestellid and fistuliporid bryozoans, sponge-like molds and primary cavities filled by radiaxial fibrous cement occurs all over the slope but dominates the deeper settings. Type B boundstone consists of globose centimeter-scale laminated accretionary structures, which commonly host botryoidal cement in growth cavities. The laminae nucleate around fenestellid bryozoans, sponges, Renalcis and Girvanella-like filaments. Type B boundstone typically occurs at depths between 20–150 m to locally more than 300 m and forms the bulk of the Bashkirian prograding slope. The uppermost slope boundstone (type C; between 0 and 20–100 m depth) includes peloidal micrite, radiaxial fibrous cement, bryozoans, sponge molds, Donezella, Renalcis, Girvanella, Ortonella, calcareous algae and calcitornellid foraminifers. From depths of 80–200 m to 450 m, 1–30 m thick lenses of crinoidal packstone, spiculitic wackestone, and bryozoan biocementstone with red-stained micrite matrix are episodically intercalated with boundstone and breccias. These layers increase in number from the uppermost Bashkirian to the Moscovian in parallel with the change from a rapidly prograding to an aggrading architecture. The red-stained strata share comparable features with Lower Carboniferous deeper-water mud-mound facies and were deposited during relative rises of sea level and pauses in boundstone production. Rapid relative sea-level rises might have been associated with changes in oceanographic conditions not favourable for thecalcimicrobial boundstone growth, such as upwelling of colder, nutrient-rich waters lifting the thermocline to depths of 80–200 m. Downslope of 150–300 m, boundstones interfinger with layers of matrix-free breccias, lenses of matrix-rich breccias, platform- and slope-derived grainstone and crinoidal packstone. Clast-supported breccias bound by radiaxial cement are produced by rock falls and avalanches coeval to boundstone growth. Matrix-rich breccias are debris flow deposits triggered by the accumulation of red-stained layers. Debris flows develop following the relative sea-level rises, which favour the deposition of micrite-rich lithofacies on the slope rather than being related to relative sea-level falls and subaerial exposures. The steep slope angles are the result of in situ growth and rapid stabilization by marine cement in the uppermost part, passing into a detrital talus, which rests at the angle of repose of noncohesive material. In the Moscovian, the aggradational architecture and steeper clinoforms are the result of increased accommodation space due to tectonic subsidence and due to a reduction of slope accumulation rates (from 240±45−605±35 m/My to 130±5 m/My). The increasing number of red-stained layers and the decrease of boundstone productivity are attributed to environmental changes in the adjacent basin, in particular during relative rises of sea level and to possible cooling due to icehouse conditions. The geometry of the depositional system appears to be controlled by boundstone growth rates. During the Bashkirian, the boundstone growth potential is at least 10 times greater than average values for ancient carbonate systems. The slope progradation rates (nearly 400–1000 m/My) are similar to the highest values deduced for the Holocene Bahamian prograding platform margin. The fundamental differences with modern systems are that progradation of the microbial-boundstone dominated steep slope is primarily controlled by boundstone growth rates rather than by highstand shedding from the platform top and that boundstone growth is largely independent from light and controlled by the physicochemical characteristics of seawater.  相似文献   
4.
Cartilage damage in osteoarthritis (OA) is considered an imbalance between catabolic and anabolic factors, favoring the catabolic side. We assessed whether adenoviral overexpression of transforming growth factor-β (TGFβ) enhanced cartilage repair and whether TGFβ-induced fibrosis was blocked by local expression of the intracellular TGFβ inhibitor Smad7. We inflicted cartilage damage by injection of interleukin-1 (IL-1) into murine knee joints. After 2 days, we injected an adenovirus encoding TGFβ. On day 4, we measured proteoglycan (PG) synthesis and content. To examine whether we could block TGFβ-induced fibrosis and stimulate cartilage repair simultaneously, we injected Ad-TGFβ and Ad-Smad7. This was performed both after IL-1-induced damage and in a model of primary OA. In addition to PG in cartilage, synovial fibrosis was measured by determining the synovial width and the number of procollagen I-expressing cells. Adenoviral overexpression of TGFβ restored the IL-1-induced reduction in PG content and increased PG synthesis. TGFβ-induced an elevation in PG content in cartilage of the OA model. TGFβ-induced synovial fibrosis was strongly diminished by simultaneous synovial overexpression of Smad7 in the synovial lining. Of great interest, overexpression of Smad7 did not reduce the repair-stimulating effect of TGFβ on cartilage. Adenoviral overexpression of TGFβ stimulated repair of IL-1- and OA-damaged cartilage. TGFβ-induced synovial fibrosis was blocked by locally inhibiting TGFβ signaling in the synovial lining by simultaneously transfecting it with an adenovirus overexpressing Smad7.  相似文献   
5.
The photosynthetic and growth characteristics of Ceratophyllum demersum L. were investigated under laboratory conditions which simulated those encountered in the plants' normal environment. The carbon fixation rate of C. demersum measured with 14C at light and carbon saturation at pH 8.0 was 4.48 mg C (g ash-free dry weight)−1 h−1. It was lower at pH 6.5 than at pH 8.0. The light use efficiencies in quiescent plants and actively growing plants were 6.3 and 8.7 × 10−9 kg CO2 J−1, respectively, with corresponding maximum photosynthetic rates of 2.67 and 4.36 mg C (g ash-free dry weight)−1 h−1. Photorespiration in actively growing plants consumed 24% of the carbon fixed. Incubation with DCMU demonstrated that about one-third was refixed. The optimum temperature for carbon fixation was 25°C. The C3-photosynthetic pathway was the main operational route as indicated by the early photosynthetic products (largely C3-acids) and the absence of Krantz anatomy and the chlorophyll a:b ratio (2.7). The maximum relative growth rates ranged from 0.025 to 0.041 g ash-free dry weight (g ash-free dry weight)−1 day−1 in the field (Lake Vechten, 1 to 3 m depth classes).  相似文献   
6.
The effect of long-term potentiation (LTP) on endogenous amino acid release from rat hippocampus slices was studied. LTP was induced in vivo by application of a tetanus (200 Hz, 200 ms) to the Schaffer collateral fibers in unanesthetized rats. Endogenous release of glutamate and gamma-aminobutyric acid (GABA) was investigated 60 min after tetanization in CA1 subslices of potentiated and control rats. No significant effects of LTP were observed in basal and K(+)-induced Ca(2+)-independent release components of these amino acids. In contrast, K(+)-induced Ca(2+)-dependent release of both glutamate and GABA increased approximately 100% in slices from potentiated rats. No differences were observed in total content of glutamate and GABA between the subslices from control and LTP animals. These results suggest a persistent increase in the recruitment of the presynaptic vesicular pool of glutamate and GABA during LTP.  相似文献   
7.

Background

A new class of antiretrovirals, AntiViral-HyperActivation Limiting Therapeutics (AV-HALTs), has been proposed as a disease-modifying therapy to both reduce Human Immunodeficiency Virus Type 1 (HIV-1) RNA levels and the excessive immune activation now recognized as the major driver of not only the continual loss of CD4+ T cells and progression to Acquired Immunodeficiency Syndrome (AIDS), but also of the emergence of both AIDS-defining and non-AIDS events that negatively impact upon morbidity and mortality despite successful (ie, fully suppressive) therapy. VS411, the first-in-class AV-HALT, combined low-dose, slow-release didanosine with low-dose hydroxycarbamide to accomplish both objectives with a favorable toxicity profile during short-term administration. Five dose combinations were administered as VS411 to test the AV-HALT Proof-of-Concept in HIV-1-infected subjects.

Methods

Multinational, double-blind, 28-day Phase 2a dose-ranging Proof-of-Concept study of antiviral activity, immunological parameters, safety, and genotypic resistance in 58 evaluable antiretroviral-naïve HIV-1-infected adults. Randomization and allocation to study arms were carried out by a central computer system. Results were analyzed by ANOVA, Kruskal-Wallis, ANCOVA, and two-tailed paired t tests.

Results

VS411 was well-tolerated, produced significant reductions of HIV-1 RNA levels, increased CD4+ T cell counts, and led to significant, rapid, unprecedented reductions of immune activation markers after 28 days despite incomplete viral suppression and without inhibiting HIV-1-specific immune responses. The didanosine 200 mg/HC 900 mg once-daily formulation demonstrated the greatest antiviral efficacy (HIV-1 RNA: −1.47 log10 copies/mL; CD4+ T cell count: +135 cells/mm3) and fewest adverse events.

Conclusions

VS411 successfully established the Proof-of-Concept that AV-HALTs can combine antiviral efficacy with rapid, potentially beneficial reductions in the excessive immune system activation associated with HIV-1 disease. Rapid reductions in markers of immune system hyperactivation and cellular proliferation were obtained despite the fact that VS411 did not attain maximal suppression of HIV RNA, suggesting this effect was due to the HALT component.

Trial Registration

ITEudraCT 2007-002460-98  相似文献   
8.
ABSTRACT: BACKGROUND: Severe malaria is a medical emergency with high mortality. Prompt achievement of therapeutic concentrations of highly effective anti-malarial drugs reduces the risk of death. The aim of this study was to assess the pharmacokinetics and pharmacodynamics of intravenous artesunate in Ugandan adults with severe malaria. METHODS: Fourteen adults with severe falciparum malaria requiring parenteral therapy were treated with 2.4 mg/kg intravenous artesunate. Blood samples were collected after the initial dose and plasma concentrations of artesunate and dihydroartemisinin measured by solid-phase extraction and liquid chromatography-tandem mass spectrometry. The study was approved by the Makerere University Faculty of Medicine Research and Ethics Committee (Ref2010-015) and Uganda National Council of Science and Technology (HS605) and registered with ClinicalTrials.gov (NCT01122134). RESULTS: All study participants achieved prompt resolution of symptoms and complete parasite clearance with median (range) parasite clearance time of 17 (8-24) hours. Median (range) maximal artesunate concentration (Cmax) was 3260 (1020-164000) ng/mL, terminal elimination half-life (T1/2) was 0.25 (0.1-1.8) hours and total artesunate exposure (AUC) was 727 (290-111256) ngh/mL. Median (range) dihydroartemisinin Cmax was 3140 (1670-9530) ng/mL, with Tmax of 0.14 (0.6 - 6.07) hours and T1/2 of 1.31 (0.8-2.8) hours. Dihydroartemisinin AUC was 3492 (2183-6338) ngh/mL. None of the participants reported adverse events. CONCLUSIONS: Plasma concentrations of artesunate and dihydroartemisinin were achieved rapidly with rapid and complete symptom resolution and parasite clearance with no adverse events.  相似文献   
9.
The reversal of cellular differentiation to form proliferating progenitor cells is a critical aspect of regenerative ability in the urodele amphibians. This process has been studied using skeletal muscle during limb or tail regeneration, or dorsal iris epithelium during lens regeneration. An unknown activity in serum triggers cell cycle re-entry from the differentiated state. Here we describe the biochemical properties and fractionation of this serum factor. The factor is a glycoprotein that associates with large molecular weight complexes. The purification and molecular identification of the serum factor represents an important avenue in understanding regenerative ability and dedifferentiation capacity on a molecular basis.  相似文献   
10.
Almost 95% of the entire population of the Siberian crane (Grus leucogeranus) winter in Poyang Lake, China, where they forage on the tubers of the submerged aquatic macrophyte Vallisneria spiralis. The Three Gorges Dam on the Yangtze River may possibly affect this food source of the Siberian crane by affecting the light intensity reaching the top of the V. spiralis canopy. In this study, the photosynthetically active radiation at the top of the V. spiralis canopy (PARtc) in Lake Dahuchi was modeled from 1998 to 2006, and the potential impacts of changes in water level and turbidity on the underwater light climate of V. spiralis were analyzed. PARtc was calculated from incident irradiance while the losses due to reflection at the water surface, absorption, and scattering within the water column were taken into consideration. The results indicated significant differences in PARtc between years. Six years of water level and Secchi disk depth records revealed a seasonal switching of the lake from a turbid state at low water levels in autumn, winter, and spring to a clear state at high water levels during the monsoon in summer. The highest PARtc occurred at intermediate water levels, which were reached when the Yangtze River forces Lake Dahuchi out of its turbid state in early summer and the water becomes clear. The intended operation of the Three Gorges Dam, which will increase water levels in May and June, may advance the moment when Lake Dahuchi switches from turbid to clear. We suggest that this might increase production of V. spiralis and possibly improve the food habitat conditions for wintering Siberian crane in Poyang Lake.
Guofeng WuEmail:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号