首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   18篇
  国内免费   2篇
  396篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   16篇
  2020年   9篇
  2019年   11篇
  2018年   10篇
  2017年   6篇
  2016年   17篇
  2015年   9篇
  2014年   24篇
  2013年   39篇
  2012年   32篇
  2011年   33篇
  2010年   17篇
  2009年   11篇
  2008年   21篇
  2007年   18篇
  2006年   10篇
  2005年   7篇
  2004年   9篇
  2003年   17篇
  2002年   7篇
  2001年   10篇
  2000年   11篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   5篇
  1992年   7篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   5篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有396条查询结果,搜索用时 0 毫秒
1.
Vitamin A and fatty acids are critical to photoreceptor structure, function, and development. The transport of these nutrients between the pigment epithelium and neural retina is mediated by interphotoreceptor retinoid-binding protein (IRBP). IRBP, a 133-kDa (human) glycolipoprotein, is the major protein component of the extracellular matrix separating these two cell layers. In amphibians and mammals, IRBP consists of four homologous repeats of about 300 amino acids which form two retinol and four fatty acid-binding sites. Here we show that IRBP in teleosts is a simpler protein composed of only two repeats. Western blot analysis shows that goldfish IRBP is half the size (70 kDa) of IRBP in higher vertebrates. Metabolic labeling studies employing Brefeldin A taken together with in situ hybridization studies and the presence of a signal peptide show that goldfish IRBP is secreted by the cone photoreceptors. The translated amino acid sequence has a calculated molecular weight of 66.7 kDa. The primary structure consists of only two homologous repeats with a similarity score of 52.5%. The last repeats of human and goldfish IRBPs are 69.1% similar with hydrophobic regions being the most similar. These data suggest that two repeats were lost during the evolution of the ray-finned fish (Actinopterygii), or that the IRBP gene duplicated between the emergence of bony fish (Osteichthyes) and amphibians. Acquisition of a multirepeat structure may reflect evolutionary pressure to efficiently transport higher levels of hydrophobic molecules within a finite space. Quadruplication of an ancestral IRBP gene may have been an important event in the evolution of photoreceptors in higher vertebrates. Correspondence to: F. Gonzalez-Fernandez  相似文献   
2.
CK1δ (Casein kinase I isoform delta) is a member of CK1 kinase family protein that mediates neurite outgrowth and the function as brain-specific microtubule-associated protein. ATP binding kinase domain of CK1δ is essential for regulating several key cell cycle signal transduction pathways. Mutation in CK1δ protein is reported to cause cancers and affects normal brain development. S97C mutation in kinase domain of CK1δ protein has been involved to induce breast cancer and ductal carcinoma. We performed molecular docking studies to examine the effect of this mutation on its ATP-binding affinity. Further, we conducted molecular dynamics simulations to understand the structural consequences of S97C mutation over the kinase domain of CK1δ protein. Docking results indicated the loss of ATP-binding affinity of mutant structure, which were further rationalized by molecular dynamics simulations, where a notable loss in 3-D conformation of CK1δ kinase domain was observed in mutant as compared to native. Our results explained the underlying molecular mechanism behind the observed cancer associated phenotype caused by S97C mutation in CK1δ protein.  相似文献   
3.
4.
International Journal of Peptide Research and Therapeutics - The effect of various concentrations of amyloid beta peptide (ABP) in different pH (pH 2, 6, 7, 8, 10) in aging at different time...  相似文献   
5.
Length-weight relationship (LWR) parameters were analysed for six demersal finfish species from the Gulf of Mannar coast, Bay of Bengal. Fishes were sampled monthly from the landings of trawlers operated along the coast of Tuticorin and Rameshwaram with a cod-end mesh size of 35 mm at the depth of 60–80 m. Fish specimens were sampled by measuring the total length (TL) and total weight (TW) with precision to 0.1 cm and 0.1 g respectively. The present study also recorded a new maximum total length for Engyprosopon macrolepis, Torquigener brevipinnis and Leiognathus brevirostris.  相似文献   
6.
Ras-related C3 botulinum toxin substrate 1 (RAC1) is a plasma membrane-associated small GTPase which cycles between the active GTP-bound and inactive GDP-bound states. There is wide range of evidences indicating its active participation in inducing cancer-associated phenotypes. RAC1 F28L mutation (RACF28L) is a fast recycling mutation which has been implicated in several cancer associated cases. In this work we have performed molecular docking and molecular dynamics simulation (~0.3 μs) to investigate the conformational changes occurring in the mutant protein. The RMSD, RMSF and NHbonds results strongly suggested that the loss of native conformation in the Switch I region in RAC1 mutant protein could be the reason behind its oncogenic transformation. The overall results suggested that the mutant protein attained compact conformation as compared to the native. The major impact of mutation was observed in the Switch I region which might be the crucial reason behind the loss of interaction between the guanine ring and F28 residue.  相似文献   
7.
BACKGROUND: Rheumatoid arthritis (RA) is a prevalent and debilitating disease that affects the joints. Infiltration of blood-derived cells in the affected joints upon activation generate reactive oxygen/nitrogen species, resulting in an oxidative stress. One approach to counteract this oxidative stress is the use of antioxidants as therapeutic agents. OBJECTIVES: Kalpaamruthaa (KA), a modified indigenous Siddha preparation constituting Semecarpus anacardium nut milk extract (SA), Emblica officinalis (EO) and honey was evaluated for its synergistic antioxidant potential in adjuvant induced arthritic rats than sole SA treatment. MATERIALS AND METHODS: Levels/activities of reactive oxygen species (ROS)/reactive nitrogen species (RNS), myeloperoxidase, lipid peroxide and enzymic and non-enzymic antioxidants were determined in control, arthritis induced, SA and KA treated (150 mg/kg b.wt.) animals. RESULTS AND CONCLUSION: The levels/activities of ROS/RNS, myeloperoxidase and lipid peroxide were increased significantly (p<0.05) and the activities of enzymic and non-enzymic antioxidants were in turn decreased in arthritic rats, whereas these changes were reverted to near normal levels upon SA and KA treatment. KA showed an enhanced antioxidant potential than sole treatment of SA in adjuvant induced arthritic rats. KA via enhancing the antioxidant status in adjuvant induced arthritic rats than sole SA treatment proves to be an important therapeutic modality in the management of RA and thereby instituting the role of oxidative stress in the clinical manifestation of the disease RA. The profound antioxidant efficacy of KA than SA alone might be due to the synergistic action of the polyphenols such as flavonoids, tannins and other compounds such as vitamin C and hydroxycinnamates present in KA.  相似文献   
8.
Senescence and autophagy play important roles in homeostasis. Cellular senescence and autophagy commonly cause several degenerative processes, including oxidative stress, DNA damage, telomere shortening, and oncogenic stress; hence, both events are known to be interrelated. Autophagy is well known for its disruptive effect on human diseases, and it is currently proposed to have a direct effect on triggering senescence and quiescence. However, it is yet to be proven whether autophagy has a positive or negative impact on senescence. It is known that elevated levels of autophagy induce cell death, whereas inadequate autophagy can trigger cellular senescence. Both have important roles in human diseases such as aging, renal degeneration, neurodegenerative disorders, and cancer. Therefore, this review aims to highlight the relevance of senescence and autophagy in selected human ailments through a summary of recent findings on the connection and effects of autophagy and senescence in these diseases.  相似文献   
9.
Co‐evolution between hosts’ and parasites’ genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive plant TEs, by contrast, involves an innate antiviral‐like silencing response. To investigate this response’s activation, we studied the single‐copy element EVADÉ (EVD), one of few representatives of the large Ty1/Copia family able to proliferate in Arabidopsis when epigenetically reactivated. In Ty1/Copia elements, a short subgenomic mRNA (shGAG) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full‐length genomic flGAG‐POL. We show here that the predominant cytosolic distribution of shGAG strongly favors its translation over mostly nuclear flGAG‐POL. During this process, an unusually intense ribosomal stalling event coincides with mRNA breakage yielding unconventional 5’OH RNA fragments that evade RNA quality control. The starting point of sRNA production by RNA‐DEPENDENT‐RNA‐POLYMERASE‐6 (RDR6), exclusively on shGAG, occurs precisely at this breakage point. This hitherto‐unrecognized “translation‐dependent silencing” (TdS) is independent of codon usage or GC content and is not observed on TE remnants populating the Arabidopsis genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against EVD de novo invasions that underlies its associated sRNA pattern.  相似文献   
10.
Diarrhea associated with ulcerative colitis (UC) occurs primarily as a result of reduced Na+ absorption. Although colonic Na+ absorption is mediated by both epithelial Na+ channels (ENaC) and Na-H exchangers (NHE), inhibition of NHE-mediated Na+ absorption is the primary cause of diarrhea in UC. As there are conflicting observations reported on NHE expression in human UC, the present study was initiated to identify whether NHE isoforms (NHE2 and NHE3) expression is altered and how Na+ absorption is regulated in DSS-induced inflammation in rat colon, a model that has been used to study UC. Western blot analyses indicate that neither NHE2 nor NHE3 expression is altered in apical membranes of inflamed colon. Na+ fluxes measured in vitro under voltage clamp conditions in controls demonstrate that both HCO3-dependent and butyrate-dependent Na+ absorption are inhibited by S3226 (NHE3-inhibitor), but not by HOE694 (NHE2-inhibitor) in normal animals. In contrast, in DSS-induced inflammation, butyrate-, but not HCO3-dependent Na+ absorption is present and is inhibited by HOE694, but not by S3226. These observations indicate that in normal colon NHE3 mediates both HCO3-dependent and butyrate-dependent Na+ absorption, whereas DSS-induced inflammation activates NHE2, which mediates butyrate-dependent (but not HCO3-dependent) Na+ absorption. In in vivo loop studies HCO3-Ringer and butyrate-Ringer exhibit similar rates of water absorption in normal rats, whereas in DSS-induced inflammation luminal butyrate-Ringer reversed water secretion observed with HCO3-Ringer to fluid absorption. Lumen butyrate-Ringer incubation activated NHE3-mediated Na+ absorption in DSS-induced colitis. These observations suggest that the butyrate activation of NHE2 would be a potential target to control UC-associated diarrhea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号