首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   62篇
  435篇
  2023年   2篇
  2021年   13篇
  2020年   5篇
  2019年   10篇
  2018年   9篇
  2017年   7篇
  2016年   14篇
  2015年   18篇
  2014年   15篇
  2013年   19篇
  2012年   30篇
  2011年   17篇
  2010年   14篇
  2009年   15篇
  2008年   19篇
  2007年   13篇
  2006年   10篇
  2005年   15篇
  2004年   7篇
  2003年   11篇
  2002年   8篇
  2001年   13篇
  2000年   16篇
  1999年   7篇
  1998年   13篇
  1997年   16篇
  1996年   6篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   13篇
  1991年   9篇
  1990年   9篇
  1989年   6篇
  1988年   5篇
  1986年   7篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1979年   3篇
  1978年   8篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有435条查询结果,搜索用时 15 毫秒
1.
Book Review     
Philip  Donoghue 《Acta zoologica》2004,85(4):265-266
  相似文献   
2.
We investigated the importance of specific serine residues for autophosphorylation and transformation by serine-threonine protein kinase p37mos. When either serine 326 or 358 was replaced with alanine, the resulting mutant protein retained the ability to transform NIH 3T3 cells but failed to autophosphorylate in vitro. These studies represent the first functional uncoupling of these two activities for p37mos.  相似文献   
3.
Achondroplasia, the most common genetic form of dwarfism, is an autosomal dominant disorder whose underlying mechanism is a defect in the maturation of the cartilage growth plate of long bones. Achondroplasia has recently been shown to result from a Gly to Arg substitution in the transmembrane domain of the fibroblast growth factor receptor 3 (FGFR3), although the molecular consequences of this mutation have not been investigated. By substituting the transmembrane domain of the Neu receptor tyrosine kinase with the transmembrane domains of wild-type and mutant FGFR3, the Arg380 mutation in FGFR3 is shown to activate both the kinase and transforming activities of this chimeric receptor. Residues with side chains capable of participating in hydrogen bond formation, including Glu, Asp, and to a lesser extent, Gln, His and Lys, were able to substitute for the activating Arg380 mutation. The Arg380 point mutation also causes ligand-independent stimulation of the tyrosine kinase activity of FGFR3 itself, and greatly increased constitutive levels of phosphotyrosine on the receptor. These results suggest that the molecular basis of achondroplasia is unregulated signal transduction through FGFR3, which may result in inappropriate cartilage growth plate differentiation and thus abnormal long bone development. Achondroplasia may be one of the number of cogenital disorders where constitutive activation of a member of the FGFR family leads to development abnormalities.  相似文献   
4.
Reconstructions of the human-African great ape phylogeny by using mitochondrial DNA (mtDNA) have been subject to considerable debate. One confounding factor may be the lack of data on intraspecific variation. To test this hypothesis, we examined the effect of intraspecific mtDNA diversity on the phylogenetic reconstruction of another Plio- Pleistocene radiation of higher primates, the fascicularis group of macaque (Macaca) monkey species. Fifteen endonucleases were used to identify 10 haplotypes of 40-47 restriction sites in M. mulatta, which were compared with similar data for the other members of this species group. Interpopulational, intraspecific mtDNA diversity was large (0.5%- 4.5%), and estimates of divergence time and branching order incorporating this variation were substantially different from those based on single representatives of each species. We conclude that intraspecific mtDNA diversity is substantial in at least some primate species. Consequently, without prior information on the extent of genetic diversity within a particular species, intraspecific variation must be assessed and accounted for when reconstructing primate phylogenies. Further, we question the reliability of hominoid mtDNA phylogenies, based as they are on one or a few representatives of each species, in an already depauperate superfamily of primates.   相似文献   
5.
6.
7.
We previously documented a greater than 100-fold rostrocaudal gradient of chloramphenicol acetyltransferase (CAT) expression in the muscles of adult mice that bear a myosin light chain-CAT transgene: successively more caudal muscles express successively higher levels of CAT. Here we studied the development and maintenance of this positional information in vitro. CAT levels reflect the rostrocaudal positions of the muscles from which the cells are derived in cultures established from adult muscles, in clones derived from individual adult myogenic (satellite) cells, in cultures prepared from embryonic myoblasts, and in cell lines derived by retrovirus-mediated transfer of an oncogene to satellite cells. Our results suggest that myoblasts bear a positional memory that is established in embryos, retained in adults, cell autonomous, heritable, stable to transformation, and accessible to study in clonal cell lines.  相似文献   
8.
The ITS sequences of Acropora spp. are the shortest so far identified in any metazoan and are among the shortest seen in eukaryotes; ITS1 was 70-80 bases, and ITS2 was 100-112 bases. The ITS sequences were also highly variable, but base composition and secondary structure prediction indicate that divergent sequence variants are unlikely to be pseudogenes. The pattern of variation was unusual in several other respects: (1) two distinct ITS2 types were detected in both A. hyacinthus and A. cytherea, species known to hybridize in vitro with high success rates, and a putative intermediate ITS2 form was also detected in A. cytherea; (2) A. valida was found to contain highly (29%) diverged ITS1 variants; and (3) A. longicyathus contained two distinct 5.8S rDNA types. These data are consistent with a reticulate evolutionary history for the genus Acropora.   相似文献   
9.
The molecular clock provides the only viable means of establishing realistic evolutionary timescales but it remains unclear how best to calibrate divergence time analyses. Calibrations can be applied to the tips and/or to the nodes of a phylogeny. Tip-calibration is an attractive approach since it allows fossil species to be included alongside extant relatives in molecular clock analyses. However, most fossil species are known from multiple stratigraphical horizons and it remains unclear how such age ranges should be interpreted to codify tip-calibrations. We use simulations and empirical data to explore the impact on precision and accuracy of different approaches to informing tip-calibrations. In particular, we focus on the effect of using tip-calibrations defined using the oldest vs youngest stratigraphic occurrences, the full stratigraphical range, as well as confidence intervals on these data points. The results of our simulations show that using different calibration approaches leads to different divergence-time estimates and demonstrate that concentrating tip-calibrations near the root of the dated phylogeny improves both precision and accuracy of estimated divergence times. Finally, our results indicate that the highest levels of accuracy and precision are achieved when fossil tips are calibrated based on the fossil occurrence from which the morphological data were derived. These trends were corroborated by analysis of an empirical dataset for Ursidae. Overall, we conclude that tip-dating analyses should, in particular, employ tip calibrations close to the root of the tree and they should be calibrated based on the age of the fossil used to inform the morphological data used in Total Evidence Dating.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号